首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the effective Hamiltonian representation, we have obtained a quantum stochastic differential equation of a generalized Langevin type for the evolution operator of an atomic ensemble in a microcavity in an external broadband quantized field and in a nonresonant field of the microcavity. We show that, depending on the number of particles in the atomic ensemble, its dynamics demonstrates both the Langevin and the generalized Langevin types of the two-photon spontaneous decay. In this case, one photon is emitted into the cavity mode, whereas the other photon is emitted into the external broadband electromagnetic field. The Langevin type is determined by a considerable Stark interaction of the atomic ensemble with the broadband photon-free quantized field. We show that, here, the Stark interaction is represented by a quantized Poisson process and, depending on its magnitude (at certain numbers of atoms in the ensemble), the two-photon collective spontaneous emission of microcavity atoms can be completely suppressed. In this case, the two-photon spontaneous emission of the singly excited atomic ensemble is described by the two-level model, while the atom-photon cluster of the microcavity under the described conditions is an artificial two-level quantum particle with a strong Stark interaction.  相似文献   

2.
It has been shown in the Markov approximation of the quantum stochastic differential equation approach, with decay of the symmetric W state as an example, that the collective spontaneous decay of an ensemble of identical particles can be suppressed almost completely due to the Stark interaction of the particles with the vacuum electromagnetic field, which results in stabilization of the excited state of the atomic ensemble with a certain number of particles.  相似文献   

3.
4.
The Markov model of spontaneous emission of an atom localized in a spatial region with a broadband electromagnetic field with zero photon density is considered in the conditions of coupling of the electromagnetic field with the broadband field of a neighboring space. The evolution operator of the system and the kinetic equation for the atom are obtained. It is shown that the field coupling constant affects the rate of spontaneous emission of the atom, but is not manifested in the atomic frequency shift. The analytic expression for the radiative decay constant for the atom is found to be analogous in a certain sense to the expression for the decay constant for a singly excited localized ensemble of identical atoms in the conditions when the effect of stabilization of its excited state by the Stark interaction with the vacuum broadband electromagnetic field is manifested. The model is formulated based on quantum stochastic differential equations of the non- Wiener type and the generalized algebra of the Ito differential of quantum random processes.  相似文献   

5.
For a model of an open quantum system—a concentrated ensemble consisting of similar atoms and interacting with a one-dimensional quantum vacuum environment with a zero photon density—quantum stochastic differential equations of a non-Wiener type of the general form have been obtained; based on the equations, kinetic equations describing a wide class of physical systems are derived. The distinctive feature of such systems is effects of suppression of collective spontaneous emission and stabilization of the excited state. For the open classical system exposed to the action of noise in the form of a Levy process of the general non-Gaussian kind, kinetic equations of the Fokker-Planck type with fractional derivatives have been obtained based on classical non-Wiener stochastic differential equations. This emphasizes the common base of the developed theory for different types of open systems, which is expressed in using the mathematical formalism of stochastic differential equations of the general non-Wiener type.  相似文献   

6.
Based on a Hamiltonian of a charged particle system with an intrinsic magnetic moment in an external electromagnetic field with the field of magnetic moments, quantum hydrodynamic equations are derived, including the equations for densities of particle number, momentum, magnetic moment, and energy. In the self-consistent field approximation, a closed system of equations is obtained, which provides the basis for investigation of collective physical phenomena in distributed quantum systems. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 74–80, December, 2007.  相似文献   

7.
The interaction of an atomic ensemble localized in a microcavity with external electromagnetic fields under Raman resonance conditions with an optically forbidden atomic transition involving photons of the microcavity mode has been described in terms of third-order polynomial algebra. It has been shown that atoms and photons localized in the microcavity under these conditions form a united object, an atom-photon cluster, on the states of which the irreducible representations of polynomial algebra are implemented. Classical coherent and quantum broadband electromagnetic fields are considered as external fields. The effective Hamiltonian, effective dipole moment operator, and relaxation operator of the atom-photon cluster are expressed in terms of the generators of polynomial algebra, which is the algebra of the dynamical symmetry of the problem. The developed mathematical technique has been applied to describe the main radiative processes—spontaneous emission and nutation effect—on atom-photon clusters. All of these effects are peculiar and differ from similar phenomena on two-level atoms, but only simple cases of the mentioned radiative processes have been considered.  相似文献   

8.
It is shown that the effective Hamiltonian representation, as it is formulated in author??s papers, serves as a basis for distinguishing, in a broadband environment of an open quantum system, independent noise sources that determine, in terms of the stationary quantum Wiener and Poisson processes in the Markov approximation, the effective Hamiltonian and the equation for the evolution operator of the open system and its environment. General stochastic differential equations of generalized Langevin (non-Wiener) type for the evolution operator and the kinetic equation for the density matrix of an open system are obtained, which allow one to analyze the dynamics of a wide class of localized open systems in the Markov approximation. The main distinctive features of the dynamics of open quantum systems described in this way are the stabilization of excited states with respect to collective processes and an additional frequency shift of the spectrum of the open system. As an illustration of the general approach developed, the photon dynamics in a single-mode cavity without losses on the mirrors is considered, which contains identical intracavity atoms coupled to the external vacuum electromagnetic field. For some atomic densities, the photons of the cavity mode are ??locked?? inside the cavity, thus exhibiting a new phenomenon of radiation trapping and non-Wiener dynamics.  相似文献   

9.
This paper deals with an (otherwise classical) two-(non-interacting) particle system immersed in a common stochastic zero-point radiation field. The treatment is an extension of the one-particle case for which it has been shown that the quantum properties of the particle emerge from its interaction with the background field under stationary and ergodic conditions. In the present case we show that non-classical correlations—describable only in terms of entanglement—arise between the (nearby) particles whenever both of them resonate to a common frequency of the field. For identical particles the entanglement becomes maximum and must be described by totally (anti)symmetric states.  相似文献   

10.
M. Apostol 《Optik》2012,123(3):193-196
The interaction of the classical electromagnetic field with an ensemble of polarizable, identical, atomic particles with two energy levels is investigated, and the coupled non-linear equations of motion for the polarization field and the amplitudes of the level occupancies are solved by a perturbation-theoretical method. A small coupling constant is identified, and the solution is represented as a power series in this coupling constant. Explicit results are given for the leading contributions to the solution. In particular, it is shown that an external electromagnetic field may induce a lasing effect in such an ensemble of particles, by populating the (initially empty) upper level.  相似文献   

11.
The dynamic equation for the optical tomogram of nonrelativistic quantum system with an arbitrary Hamiltonian is obtained. The kinetic equation in the classical relativistic kinetics is discussed, and its optical tomography representation is obtained. Dynamic equations for the Wigner functions of relativistic spinless quantum particles in electromagnetic and scalar fields are obtained. Optical tomographic-distribution functions of weakly relativistic spinless quantum particles are introduced, and dynamic equations for these functions in weak electric and scalar fields are obtained.  相似文献   

12.
M. Apostol  M. Ganciu 《Physics letters. A》2010,374(48):4848-4852
The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.  相似文献   

13.
The Hamiltonian of relativistic particles with electric and magnetic dipole moments that interact with an electromagnetic field is determined in the Foldy-Wouthuysen representation. Transition to the semiclassical approximation is carried out. The quantum-mechanical and semiclassical equations of spin motion are derived. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 9–12, August, 2005.  相似文献   

14.
15.
The exact solution of the Corben–Schwinger equations is obtained for spin-1 particles without an anomalous magnetic moment in a uniform magnetic field. The exact Hamiltonian in the Foldy–Wouthuysen representation is derived. The conservation of projections of the polarization operator onto four directions is proved. The approximate conservation of projections of this operator onto the horizontal axes of the cylindrical coordinate system is established. For spin-1 particles with the anomalous magnetic moment, the Hamiltonian in the Foldy–Wouthuysen representation is deduced within first order terms in the Planck constant. Dynamics of spin-1 particles with the anomalous magnetic moment and their spins in the strong uniform magnetic field are calculated.  相似文献   

16.
The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) equations. For a model of “white noise” fluctuations, using ML equations, a second order partial differential equation is found which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the “ground state” energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of the vacuum quantum field fluctuations may be constructed on a 6D space-time continuum with a 2D compactified subspace. Their influence on the refraction indexes of vacuum is studied.  相似文献   

17.
The classical partition function for a system in thermodynamical equilibrium formed by N identical non-relativistic particles interacting through Coulomb potentials and with the dynamical electromagnetic field is studied. It is proved that the dynamical or transverse EM degrees of freedom decouple from the particle ones. It is also shown that this decoupling does to take place in the quantum mechanical partition function. The leading quantum corrections to the classical partition function are explicitly given. Such corrections are shown to be determined by instantaneous dipole-dipole coulombic interactions and by self-energy effects, and to receive no contribution from the interaction among different particles mediated by the dynamical EM field.  相似文献   

18.
19.
F. Reuse 《Foundations of Physics》1979,9(11-12):865-882
A canonical formalism for the relativistic classical mechanics of many particles is proposed. The evolution equations for a charged particle in an electromagnetic field are obtained and the relativistic two-body problem with an invariant interaction is treated. Along the same line a quantum formalism for the spinless relativistic particle is obtained by means of imprimitivity systems according to Mackey theory. A quantum formalism for the spin-1/2 particle is constructed and a new definition of spin1/2 in relativity is proposed. An evolution equation for the spin-1/2 particle in an external electromagnetic field is given. The Bargmann Michel, and Telegdi equation follows from this formalism as a quasiclassical approximation. Finally, a new relativistic model for hydrogenlike atoms is proposed. The spectrum predicted is in agreement with Dirac's when radiative corrections have been added.  相似文献   

20.
It has been recently found that the equations of motion of several semiclassical systems must take into account terms arising from Berry phases contributions. Those terms are responsible for the spin Hall effect in semiconductor as well as the Magnus effect of light propagating in inhomogeneous media. Intensive ongoing research on this subject seems to indicate that a broad class of quantum systems may be affected by Berry phase terms. It is therefore important to find a general procedure allowing for the determination of semiclassical Hamiltonian with Berry Phase corrections. This article presents a general diagonalization method at order ħ for a large class of quantum Hamiltonians directly inducing Berry phase corrections. As a consequence, Berry phase terms on both coordinates and momentum operators naturally arise during the diagonalization procedure. This leads to new equations of motion for a wide class of semiclassical system. As physical applications we consider here a Dirac particle in an electromagnetic or static gravitational field, and the propagation of a Bloch electrons in an external electromagnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号