首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Oligopolistic Investment Model of the Finnish Electricity Market   总被引:8,自引:0,他引:8  
The investment problem faced by producers in deregulated electricity markets contains high uncertainties about the future. It can also be seen as a game, as only a small number of large players act in the market. A dynamic stochastic oligopoly model to describe the production and investment in such a situation is developed and applied to the Finnish electricity market. The demand growth rate is modeled as a stochastic variable. The strategies of the firms consist of investments and production levels for base and peak load periods. The firms have nuclear, hydro and thermal capacities, but are only allowed to invest in new thermal capacity. Using a so-called sample-path adapted open-loop information structure, the model contributes to the understanding of the dynamics of production, investment and market power in a medium time horizon. The solution method uses recent developments in variational inequality and mixed complementarity problem formulations.  相似文献   

2.
We propose a stochastic model for the daily operation scheduling of a generation system including pumped storage hydro plants and wind power plants, where the uncertainty is represented by the hourly wind power production. In order to assess the value of the stochastic modeling, we discuss two case studies: in the former the scenario tree is built so as to include both low and high wind power production scenarios, in the latter the scenario tree is built on historical wind speed data covering a time span of one and a half year. The Value of the Stochastic Solution, computed by a modified new procedure, shows that in scenarios with low wind power production the stochastic solution allows the producer to obtain a profit which is greater than the one associated to the deterministic solution. In-sample stability of the optimal function values for increasing number of scenarios is reported.  相似文献   

3.
A dynamic (multi-stage) stochastic programming model for the weekly cost-optimal generation of electric power in a hydro-thermal generation system under uncertain demand (or load) is developed. The model involves a large number of mixed-integer (stochastic) decision variables and constraints linking time periods and operating power units. A stochastic Lagrangian relaxation scheme is designed by assigning (stochastic) multipliers to all constraints coupling power units. It is assumed that the stochastic load process is given (or approximated) by a finite number of realizations (scenarios) in scenario tree form. Solving the dual by a bundle subgradient method leads to a successive decomposition into stochastic single (thermal or hydro) unit subproblems. The stochastic thermal and hydro subproblems are solved by a stochastic dynamic programming technique and by a specific descent algorithm, respectively. A Lagrangian heuristics that provides approximate solutions for the first stage (primal) decisions starting from the optimal (stochastic) multipliers is developed. Numerical results are presented for realistic data from a German power utility and for numbers of scenarios ranging from 5 to 100 and a time horizon of 168 hours. The sizes of the corresponding optimization problems go up to 200000 binary and 350000 continuous variables, and more than 500000 constraints.  相似文献   

4.
The optimization problem in this paper is targeted at large-scale hydrothermal power systems. The thermal part of the system is a multi-area power pool with tie-line constraints, and the hydro part is a set of cascaded hydrostations. The objective is to minimize the operation cost of the thermal subsystem. This is an integer nonlinear optimization process with a large number of variables and constraints. In order to obtain the optimal solution in a reasonable time, we decompose the problem into thermal and hydro subproblems. The coordinator between these subproblems is the system Lagrange multiplier. For the thermal subproblem, in a multi-area power pool, it is necessary to coordinate the area generations for reducing the operation cost without violating tie limits. For the hydro subsystem, network flow concepts are adopted to coordinate water usage over the entire study time span, and the reduced gradient method is used to overcome the linear characteristic of the network flow method in order to obtain the optimal solution. In this study, load forecasting errors and forced outages of generating units are incorporated in system reliability requirements. Three case studies for the proposed method are presented.  相似文献   

5.
The Pacific Gas and Electric Company, the largest investor-owned energy utility in the United States, obtains a significant fraction of its electric energy and capacity from hydrogeneration. Although hydro provides valuable flexibility, it is subject to usage limits and must be carefully scheduled. In addition, the amount of energy available from hydro varies widely from year to year, depending on precipitation and streamflows. Optimal scheduling of hydrogeneration, in coordination with other energy sources, is a stochastic problem of practical significance to PG&E. SOCRATES is a system for the optimal scheduling of PG&E's various energy sources over a one- to two-year horizon. This paper concentrates on the component of SOCRATES that schedules hydro. The core is a stochastic optimization model, solved using Benders decomposition. Additional components are streamflow forecasting models and a database containing hydrological information. The stochastic hydro scheduling module of SOCRATES is undergoing testing in the user's environment, and we expect PG&E hydrologists and hydro schedulers to place progressively more reliance upon it.  相似文献   

6.
In many power markets around the world the energy generation decisions result from two-sided auctions in which producing and consuming agents submit their price-quantity bids. The determination of optimal bids in power markets is a complicated task that has to be undertaken every day. In the present work, we propose an optimization model for a price-taker hydropower producer in Nord Pool that takes into account the uncertainty in market prices and both production and physical trading aspects. The day-ahead bidding takes place a day before the actual operation and energy delivery. After this round of bidding, but before actual operation, some adjustments in the dispatched power (accepted bids) have to be done, due to uncertainty in prices, inflow and load. Such adjustments can be done in the Elbas market, which allows for trading physical electricity up to one hour before the operation hour. This paper uses stochastic programming to determine the optimal bidding strategy and the impact of the possibility to participate in the Elbas. ARMAX and GARCH techniques are used to generate realistic market price scenarios taking into account both day-ahead price and Elbas price uncertainty. The results show that considering Elbas when bidding in the day-ahead market does not significantly impact neither the profit nor the recommended bids of a typical hydro producer.  相似文献   

7.
We present a single stage stochastic mixed integer linear model for determining the optimal mix of different technologies for electricity generation, ranging from coal, nuclear and combined cycle gas turbine to hydroelectric, wind and photovoltaic, taking into account the existing plants, the cost of investment in new plants, maintenance costs, purchase and sale of ${CO}_2$ emission trading certificates and green certificates, in order to satisfy regulatory requirements. The power producer is assumed to be a price-taker. Stochasticity of future fuel prices, which affect the generation variable costs, is included in the model by means of a set of scenarios. The main contribution of the paper, beyond considering stochasticity in the future fuel prices, is the introduction of CVaR risk measure in the objective function in order to limit the possibility of low profits in bad scenarios with a fixed confidence level.  相似文献   

8.
Long-term optimal operation of a multireservoir system is complex because it is a dynamic problem (present decisions for one reservoir depend on future decisions for all reservoirs); the optimal operating policy for one reservoir depends not only on its own energy content, but also on the corresponding content of each one of the other reservoirs; it is a highly stochastic problem with respect to the reservoir inflows and it is a nonlinear problem. This paper presents a new method for determining the optimal monthly operating policy of a power system consisting of multireservoirs on a multiriver system taking into account the stochasticity of the river flows. Functional optimization techniques and minimum norm formulation have been used. Results for a numerical example composed of three rivers with four reservoirs, three reservoirs, and two reservoirs on each river, respectively, are presented.This work was supported by the National Research Council of Canada, Grant. No. A4146.  相似文献   

9.
This paper investigate a stochastic differential games for DC (defined contribution plans) pension under Vasicek stochastic interest rate. The finance market as the hypothetical counterpart, the investor as pension the leader of game. Our goal is through the game between pension plan investor and financial market, obtain optimal strategies to maximizes the expected utility of the terminal wealth. Under power utility function, by using stochastic control theory, we obtain closed-form solutions for the value function as well as the strategies. Finally, explain the research results in the economic sense, and though numerical calculation given the influence of some parameters on the optimal strategies  相似文献   

10.
This paper addresses the optimization under uncertainty of the self-scheduling, forward contracting, and pool involvement of an electricity producer operating a mixed power generation station, which combines thermal, hydro and wind sources, and uses a two stage adaptive robust optimization approach. In this problem the wind power production and the electricity pool price are considered to be uncertain, and are described by uncertainty convex sets. To solve this problem, two variants of a constraint generation algorithm are proposed, and their application and characteristics discussed. Both algorithms are used to solve two case studies based on two producers, each operating equivalent generation units, differing only in the thermal units’ characteristics. Their market strategies are investigated for three different scenarios, corresponding to as many instances of electricity price forecasts. The effect of the producers’ approach, whether conservative or more risk prone, is also investigated by solving each instance for multiple values of the so-called budget parameter. It was possible to conclude that this parameter influences markedly the producers’ strategy, in terms of scheduling, profit, forward contracting, and pool involvement. These findings are presented and analyzed in detail, and an attempted rationale is proposed to explain the less intuitive outcomes. Regarding the computational results, these show that for some instances, the two variants of the algorithms have a similar performance, while for a particular subset of them one variant has a clear superiority.  相似文献   

11.
Computational Management Science - This paper presents a stochastic model for energy commercialisation strategies of small hydro plants (SHPs) in the Brazilian electricity market. The model aims to...  相似文献   

12.
Summary This paper addresses the medium-term hydro-thermal coordination problem in an electric energy system. That is, the problem of finding the energy production of every power plant (hydro or thermal) in every subperiod of a given planning period, so that the customer load is supplied at minimum cost. The planning horizon is typically one to two months and the first week of this planning period is modeled in detail. The solution method proposed decomposes the problem in two subproblems corresponding to the hydro and thermal subsystems. These two subproblems are coordinated using a coordinating function for every subperiod. The coordinating function of a given subperiod expresses total production cost in that subperiod as a function of the total hydro production in that subperiod. The decomposition proposed makes it possible to use specialized algorithms to solve the hydro and thermal subproblems. This results in a very efficient computational procedure. From an experimental point of view the coordinating mechanism is robust. A case study is provided. It considers 61 thermal plants, a hydro system including 8 cascaded hydro plants and a 48 subperiods planning period.  相似文献   

13.
This study is an attempt to provide the management of the Electricity Generating Authority of Thailand with an effective tool for determining the best operation of thermal units. A bi-fuel thermal power plant at North Bangkok, consisting of three thermal units, is considered. One of these units is adaptable to both lignite and fuel oil use, while the others use only fuel oil. A general optimization model, applicable to most power plants, is developed and a simplified version is applied to the North Bangkok Power Plant. A 0–1 mixed integer linear programming technique is used to find a method of operating the thermal units, which minimizes total fuel costs. Comparing the optimal solutions with actual operating strategies shows that savings in costs can be realised by implementing the model solution. Moreover, since the framework developed is quite general, it may be usefully applied to other power plant studies.  相似文献   

14.
研究了需求随机环境下电力企业关于电源建设与电力调度的最优决策;考虑电源机组的能源结构约束与运营发电期内的碳排放总量约束,构建了以总成本最小化为目标的带补偿二阶段随机规划模型;定性分析了模型的最优解与装机容量等其它参数之间的联系;以南方电网公司为例,基于真实的数据并考虑政府的规划建议与企业自身的低碳化发展要求,利用情景生成法求解随机规划模型。结果反映了电力系统发展过程中环保绩效与总成本之间的矛盾之外,为企业在实践运作中计划期的电力建设决策以及运营期的发电决策提供了一些有价值的建议。  相似文献   

15.
We survey a new approach that the author and his co-workers have developed to formulate stochastic control problems (predominantly queueing systems) asmathematical programming problems. The central idea is to characterize the region of achievable performance in a stochastic control problem, i.e., find linear or nonlinear constraints on the performance vectors that all policies satisfy. We present linear and nonlinear relaxations of the performance space for the following problems: Indexable systems (multiclass single station queues and multiarmed bandit problems), restless bandit problems, polling systems, multiclass queueing and loss networks. These relaxations lead to bounds on the performance of an optimal policy. Using information from the relaxations we construct heuristic nearly optimal policies. The theme in the paper is the thesis that better formulations lead to deeper understanding and better solution methods. Overall the proposed approach for stochastic control problems parallels efforts of the mathematical programming community in the last twenty years to develop sharper formulations (polyhedral combinatorics and more recently nonlinear relaxations) and leads to new insights ranging from a complete characterization and new algorithms for indexable systems to tight lower bounds and nearly optimal algorithms for restless bandit problems, polling systems, multiclass queueing and loss networks.  相似文献   

16.
A new approach based on occupation measures is introduced for studying stochastic differential games. For two-person zero-sum games, the existence of values and optimal strategies for both players is established for various payoff criteria. ForN-person games, the existence of equilibria in Markov strategies is established for various cases.  相似文献   

17.
杨鹏 《运筹学学报》2016,20(1):19-30
在三种目标函数下, 研究了具有随机工资的养老金最优投资问题. 第一种是均值-方差准则, 第二种基于效用的随机微分博弈, 第三种基于均值-方差准则的随机微分博弈. 随机微分博弈问题中博弈的双方为养老金计划投资者和金融市场, 金融市场是博弈的虚拟手. 应用线性二次控制理论求得了三种目标函数下的最优策略和值函数的显式解.  相似文献   

18.
不同于以往研究的含期权的最优投资消费决策,研究了不确定的时间范围下含期权的最优投资决策,运用动态规划原理和随机分析的方法,解决对应的最优控制问题,最优策略可通过对应的HJB方程得到,并显式地得到了HARA效用下的最优投资策略及最优财富过程.  相似文献   

19.
杨鹏 《数学杂志》2014,34(4):779-786
本文研究了具有再保险和投资的随机微分博弈.应用线性-二次控制的理论,在指数效用和幂效用下,求得了最优再保险策略、最优投资策略、最优市场策略和值函数的显示解,推广了文[8]的结果.通过本文的研究,当市场出现最坏的情况时,可以指导保险公司选择恰当的再保险和投资策略使自身所获得的财富最大化.  相似文献   

20.
From the point of view of a price-taking hydropower producer participating in the day-ahead power market, market prices are highly uncertain. The present paper provides a model for determining optimal bidding strategies taking this uncertainty into account. In particular, market price scenarios are generated and a stochastic mixed-integer linear programming model that involves both hydropower production and physical trading aspects is developed. The idea is to explore the effects of including uncertainty explicitly into optimization by comparing the stochastic approach to a deterministic approach. The model is illustrated with data from a Norwegian hydropower producer and the Nordic power market at Nord Pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号