首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent liquid-vapor equilibrium data for three alkanal + n-alkane mixtures are examined on the basis of the surface-interaction version of the quasichemical group-contribution theory used in Part I to correlate and predict excess enthalpies and excess Gibbs energies for such mixtures. The predictions prove to be accurate to better than 10%. Using the new data, revised interaction parameters are proposed for the estimation of liquid-vapor equilibrium for normal or branched alkanal + normal alkane mixtures.  相似文献   

2.
3.
Excess molar enthalpy and excess molar volume at T =  298.15 K are reported for binary mixtures of (nonafluorobutylmethylether  +  butylmethylether, or nonane, or heptane, or pentane, or 1-propanol, or 2-propoxyethanol). Excess molar enthalpies of the mixture of (nonafluorobutylmethylether  +  1-pentanol) also are reported at T =  298.15 K. The results of excess molar enthalpy are endothermic and the results of excess molar volume are positive in the whole concentration for all the mixtures. The phase separation is found in the range of 0.15  < x <  0.92 for the 1-pentanol system. The results are explained by means of the destruction of the dipolar interactions and hydrogen bonds in the component liquids, the difference of the dispersion interaction, and the formation of the intermolecular hydrogen bonds between unlike molecules.  相似文献   

4.
5.
Densities (ρ) of pure liquids and their mixtures have been measured at 303.15 and 313.15 K and atmospheric pressure over the entire composition range for the binary mixtures of benzylalcohol with 1-propanol, 1-butanol, 1-pentanol, and 1-hexanol by using Rudolph Research Analytical digital densitometer (DDM-2911 model). Further, the ultrasonic sound velocities for the above said mixtures were also measured at 303.15 and 313.15 K. The measured density data were used to compute excess molar volumes (V E) and these were compared with the values obtained by Hwang equation. Isentropic compressibility (κ S) and excess isentropic compressibilities (κ S E ) were evaluated from experimental sound velocity and density data. Moreover, the experimental sound velocities were analyzed in terms of theoretic models namely, collision factor theory and free length theory. The experimental results were discussed in terms of intermolecular interactions between component molecules.  相似文献   

6.
7.
《Fluid Phase Equilibria》1996,126(2):195-202
Excess molar volumes of twelve binary alkanenitrile + 1-chloroalkane mixtures (ethanenitrile, propanenitrile or butanenitrile + 1-chlorobutane, + 1-chloropentane, + 1-chlorohexane or + 1-chlorooctane) have been measured using a vibrating-tube densimeter. Excess volumes for these mixtures are positive except for butanenitrile + 1-chlorobutane.  相似文献   

8.
Isothermal compressibilities K and isobaric thermal expansion coefficients p have been measured at 25 and 45°C for pure components and the following binary mixtures: 1-chlorobutane+normal alkanes (n-Cn) where n=6, 8, 10, 12, 14 and 16. With these results and other thermodynamic data from literature the next mixing quantities have also been reported: (V E/T)P, – (V)E/P)T, K S v , H E/P)T, (pVT and Cv. The obtained results have been compared at 25°C with the calculated values by using the Prigogine-Flory-Patterson theory of liquid mixtures. The theory predicts the excess volume VE and V E/P)T values rather well, the C P E quite poorly, while for V E/T)P and V E/P)T it is only predicted the trend with the chain length of the n-alkane. The last two quantities show deviations between theoretical and experimental, slightly higher in systems with longer n-alkanes than for shorter ones. Our conclusion is that a nonrigid linear molecule, like 1-chlorobutane, has a low ability as a breaker of the pure n-Cn orientation correlations, in between that which we found for toluene and p-xylene and much smaller than for cyclohexane or benzene.  相似文献   

9.
10.
《Fluid Phase Equilibria》2001,178(1-2):119-130
In order to represent vapour–liquid equilibria of binary n-alcohol–carbon dioxide mixtures the excess function-equation of state method is used in which carbon dioxide is described by the IUPAC equation of state and alcohols by a Peng–Robinson type equation where the attractive parameter is estimated by a group-contribution method. The excess function is of the Van Laar type in which the interaction parameters are calculated by a group-contribution method. This approach allows to correlate and predict with quite good accuracy VLE of binary systems of alcohols and CO2, even for heavier alcohols.  相似文献   

11.
12.
Excess molar volumes of mixtures of n-heptane + 2,5-dioxahexane and n-heptane + 2,5,8-trioxanonane were determined from density measurentents at 5, 15, 25 and 35°C. These results allowed the following mixing quantities to be reported in all range of concentrations: , (v E /T) P and (h E /P) T , at 25°C. The obtained values were then compared with the calculated values by using the Flory theory and the Nitta-Chao theory of liquid mixtures. The results are discussed in terms of order or disorder creation.  相似文献   

13.
《Fluid Phase Equilibria》1987,38(3):227-244
The experimental literature data on vapor-liquid equilibria (VLE), excess molar Gibbs energies, molar excess enthalpies and activity coefficients and partial molar excess enthalpies at infinite dilution of 1-bromoalkane + n-alkane mixtures are interpreted in terms of the DISQUAC group contribution model. The model reproduces fairly well most of the experimental data using a pair (Gibbs energy and enthalpy) of constant quasichemical interchange energies and a pair (Gibbs energy and enthalpy) of dispersive interchange energies. The dispersive interchange energies of bromoethane and of the higher 1-bromoalkanes are constant, but larger than for bromomethane. Several sets of VLE data are likely to be in error. Characteristic discrepancies between calculated and experimental values are observed in mixtures containing molecules of widely different sizes. The dispersive interchange energies of 1-chloro, 1-bromo- and 1-iodoalkanes increase in the order Cl < Br < I, as do the differences between the cohesive energy densities of haloalkanes and n-alkanes. The quasichemical interchange energies decrease in the order Cl > Br > I, almost linearly with the increasing relative surface of the halogen groups. Tentative values for the interchange energies of 1-fluoroalkanes + n-alkanes were estimated from the few available experimental data.  相似文献   

14.
15.
Phase diagrams and excess volumes at 298.15 K have been measured for the four binary mixtures carbon disulphide+cyclohexane, +n-hexane, +1,5-hexadiene, and +1,5-hexadiyne. The results are discussed qualitatively in the light of recent theoretical calculations of the structure and thermodynamic properties of mixtures containing anisotropic molecules.  相似文献   

16.
A statistical associating fluid theory for potential of variable range has been recently developed to model dipolar fluids (SAFT-VR+D) [Zhao and McCabe, J. Chem. Phys. 2006, 125, 104504]. The SAFT-VR+D equation explicitly accounts for dipolar interactions and their effect on the thermodynamics and structure of a fluid by using the generalized mean spherical approximation (GMSA) to describe a reference fluid of dipolar square-well segments. In this work, we apply the SAFT-VR+D approach to real mixtures of dipolar fluids. In particular, we examine the high-pressure phase diagram of hydrogen sulfide+n-alkane binary mixtures. Hydrogen sulfide is modeled as an associating spherical molecule with four off-center sites to mimic hydrogen bonding and an embedded dipole moment (micro) to describe the polarity of H2S. The n-alkane molecules are modeled as spherical segments tangentially bonded together to form chains of length m, as in the original SAFT-VR approach. By using simple Lorentz-Berthelot combining rules, the theoretical predictions from the SAFT-VR+D equation are found to be in excellent overall agreement with experimental data. In particular, the theory is able to accurately describe the different types of phase behavior observed for these mixtures as the molecular weight of the alkane is varied: type III phase behavior, according to the scheme of classification by Scott and Konynenburg, for the H2S+methane system, type IIA (with the presence of azeotropy) for the H2S+ethane and+propane mixtures; and type I phase behavior for mixtures of H2S and longer n-alkanes up to n-decane. The theory is also able to predict in a qualitative manner the solubility of hydrogen sulfide in heavy n-alkanes.  相似文献   

17.
New experimental data of the molar excess volume V E of the mixtures ethanol/n-butylamine, heptanol/n-butylamine, n-propanol/dibutylamine have been obtained using the technique of the vibrating tube densitometer. Together with the data for the molar excess enthalpy H E from the literature, the V E data have been used for testing the applicability of the socalled ERAS model which accounts for hydrogen bonding effects as well as for free volume effects in associating mixtures. The results obtained by adjusting the model parameters reveal a strong cross association between the unlike molecules in the mixture resulting from strong negative values for the hydrogen bonding energy and the hydrogen bonding volume.Communicated at the Festsymposium celebrating Dr. Henry V. Kehiaian's 60th birthday, Clermont-Ferrand, France, 17–18 May 1990.  相似文献   

18.
19.
《Thermochimica Acta》1987,109(2):377-382
Excess volumes have been determined over the entire composition range for benzyl alcohol + N,N-dimethylmethanesulfinamide, + N,N-dimethylbenzenesulfinamide and + dimethyl sulfoxide at 303.06 and 323.21 K. The excess molar volumes are negative for all three systems, corresponding to the tendency of sulfinyl compounds to form hydrogen-bonded complexes with benzyl alcohol.  相似文献   

20.
The relationships enthalpy of mixing and excess Gibbs energyvs. composition were studied. We report hereH E andG E for 2-CH3-c-C5H4N (α-picoline)+ (1?x) CH3CH(OH)CH3, (1?x) CH3CHCH3CH2OH, (1 ?x) CH3CH2(OH)CHCH3 or (1 ?x) CH3C(CH3) (OH)CH3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号