首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The reactions of the tetranuclear hydroxo complexes [M4(fu2-OH)8(H20)16]8+ (M = Zr or Hf) with monolacunar Keggin-type [α-PW11O39]7- and Dawson-type [α2-P2W17O61] phosphotungstates afford the polyoxoanions [(H2O)HT(fu2-OH)(PW11O39)2]8- and [(H2O)M(fu2-OH)(P2W17O61)2]14- (M = Zr or Hf), respectively, in which the 1: 1 heterometal lacunary polyoxotungstate complexes are linked into dimers through two hydroxo bridges coordinated to the heterometal atoms. The structures of these compounds were established by single-crystal X-ray diffraction and confirmed by 31P NMR spectroscopy in solution.  相似文献   

2.
A novel polyoxometalate compound consisting of monolacunary Wells-Dawson anions and trivalent lanthanide cations, K4Na2H2[Ce2(H2O)122-P2W17O61)]2·10H2O (1), has been synthesized and characterized by single crystal X-ray diffraction, elemental analyses, IR spectrum, UV spectrum and TG analyses. Single crystal X-ray diffraction reveals that CeIII ions occupy the lacunary site in the ‘cap’ regions of the Wells-Dawson ions and at the same time combine with a terminal oxygen atom of another Wells-Dawson anion, forming a centrosymmetric dimeric cluster [{Ce(H2O)42-P2W17O61)}2]14−. Furthermore, the dimeric clusters act as a bidentate ligand and coordinate two [Ce(H2O)8]3+ fragments with two terminal oxygen atoms. The bisupporting dimers are linked via K-bridge, W9–O9–K1–O13–W13, and Na-bridge, W1–O1–Na1–O15–W15, forming one-dimension (1D) chains and the chains are further connected into 3D architecture also by the potassium ions. Additionally, the electrochemistry activity of compound (1) is reported. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

3.
A novel 2D organic-inorganic hybrid 3d–4f polyoxometalate [Cu(Dap)2(H2O)][Cu(Dap)2]4.5[Gd(α-PW11O39)2] · 5H2O (I) (Dap = 1,2-diaminopropane) built by [Gd(α-PW11O39)2]11− units and [Cu(Dap)2]2+ bridges has been synthesized hydrothermally by the reaction of GdCl3, CuCl2 · 2H2O, Na9[A-α-PW9O34] · 7H2O, and Dap and characterized by elemental analysis, IR spectrum, UV spectrum, powder X-ray diffraction, and single-crystal X-ray diffraction. Single-crystal structural analysis shows that I displays an interesting 2D 3d–4f heterometallic sheet architecture with a 5-connected topology constructed from 1: 2-type [Gd(α-PW11O39)2]11− subunits and [Cu(Dap)2]2+ bridges. To the best of our knowledge, I represents a rare organic-inorganic hybrid 2D 3d–4f heterometallic monovacant Keggin phosphotungstate.  相似文献   

4.
Abstract  Two novel organic–inorganic composite phosphotungstates, [H9{Ce(α-PW11O39)2}Cu(en)2] · 6H2O (1) and H7[Cu(en)2{Er(α-PW11O39)2}Cu(en)2] · 12H2O (2) (en = ethylenediamine) have been synthesized by the hydrothermal reaction of the trivacant Keggin polyoxoanion [α-A-PW9O34]9− with CeIII or ErIII ions in the presence of Cu2+ ions and en, and structurally characterized by IR spectra, elemental analysis and thermogravimetric analysis. X-ray crystallographic analyses indicate that they are all built by sandwich-type [Ln(α-PW11O39)2]11− (Ln = CeIII, ErIII) polyoxoanions and [Cu(en)2]2+ cations generating infinite one-dimensional arrangements. To our knowledge, this 1-D chain structures constituted by mono-Ln sandwiched POM units and transition-metal complex cations are very rare. Graphical Abstract  Two novel organic–inorganic composite phosphotungstates, [H9{Ce(α-PW11O39)2}Cu(en)2] · 6H2O (1) and H7[Cu(en)2{Er(α-PW11O39)2}Cu(en)2] · 12H2O (2) (en = ethylenediamine) have been synthesized by the hydrothermal reaction of the trivacant Keggin polyoxoanion [α-A-PW9O34]9− with CeIII or ErIII ions in the presence of Cu2+ ions and en, and structurally characterized by IR spectra, elemental analysis and thermogravimetric analysis. X-ray crystallographic analyses indicate that they are all built by sandwich-type [Ln(α-PW11O39)2]11− (Ln = CeIII, ErIII) polyoxoanions and [Cu(en)2]2+ cations generating infinite one-dimensional arrangements. To our knowledge, this 1-D chain structures constituted by mono-Ln sandwiched POM units and transition-metal complex cations are very rare.   相似文献   

5.
Three new organic–inorganic hybrid complexes based on the Wells–Dawson polyoxoanion, namely (H2bpp)[Ni2(bpp)2(H2O)4(P2W18O62)]·H2O 1, [Cu6(Hbpy)6(bpy)3(P2W18O62)2]·2H2O 2 and (Him)5[Cu(im)2(P2W18O62)]·4H2O 3 [bpp = 1,3-bis (4-pyridyl) propane, bpy = 4,4′-bipyridine, im = imidazole] have been synthesized and characterized. Complex 1 exhibits a three-dimensional (6, 3)-connected framework with anatase topology constructed from [α-P2W18O62]6− clusters and [Ni(bpp)]2+ fragments. Each [α-P2W18O62]6− anion links to six nickel atoms through six terminal oxygen atoms from four polar and two equatorial WO6 octahedra, which shows a novel coordination mode of a Wells–Dawson cluster with a transition-metal atom. Complex 2 displays an interesting one-dimensional double-chain structure built from [α-P2W18O62]6− clusters and [Cu2(bpy)(Hbpy)2]2+ fragments. To our knowledge, complex 2 represents the first double-chain organic–inorganic hybrid complex based on a Wells–Dawson-type cluster. Complex 3 possesses a one-dimensional zigzag chain structure constructed from [α-P2W18O62]6− anions and [Cu(im)2]+ units through weak Cu···O interactions.  相似文献   

6.
The composition of complexes formed upon the extraction of UVI and ThIV nitrates with O-n-nonyl(N,N-dibutylcarbamoylmethyl) methyl phosphinate (L) from solutions of nitric acid without additional solvent was determined by 31P NMR spectroscopy. The structures of the complexes formed were studied by IR spectroscopy. Uranium(VI) is extracted from 3 and 5 M solutions of HNO3 as the [UO2(L)2(NO3)2] complex, while thorium(IV) is extracted from 5 M HNO3 as the [Th(L)3(NO3)3]+·NO 3 complex. In both cases, ligand L has bidentate coordination. Ligand L contacts with 3 and 5 M nitric acid to form adducts L·HNO3 and L· (HNO3)2, respectively. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2460–2464, November, 2005.  相似文献   

7.
The reactions of the oxalate complexes [M3Q7(C2O4)3]2− (M = Mo or W; Q = S or Se) with MnII, CoII, NiII, and CuII aqua and ethylenediamine complexes in aqueous and aqueous ethanolic solutions were studied. The previously unknown heterometallic complexes [Mo3Se7(C2O4)3Ni(H2O)5]·3.5H2O (1) and K3{[Cu(en)2H2O]([Mo3S7(ox)3]2Br)}·5.5H2O (2) were synthesized. In these complexes, the oxalate clusters serve as monodentate ligands. The K(H2en)2[W3S7(C2O4)3]2Br·4H2O salt (3) was isolated from solutions containing CoII, NiII, or CuII aqua complexes and ethylenediamine. The reaction of [Mo3Se7(C2O4)3]2− with HBr produced the bromide complex [Mo3Se7Br6]2−, which was isolated as (Bu4N)2[Mo3Se7Br6] (4). Complexes 1–3 were characterized by X-ray diffraction, IR spectra, and elemental analysis. The formation of 4 was detected by electrospray mass spectrometry. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1645–1649, September, 2007.  相似文献   

8.
Abstract  Reactions of monovacant Dawson-/Keggin-polyoxoanions, formed in situ from trivacant Dawson-/Keggin-precursors, with copper complexes under hydrothermal conditions lead to three inorganic–organic hybrid polyoxotungstates [Cu(en)2(H2O)]2{[Cu(en)2(H2O)]2[Cu(en)2]4[Cu(en)2][α2-P2W17CuO61]2}·(OH)2·12H2O (1), [Cu(dap)2][Cu(dap)2(H2O)]2[α-PW11CuO39]·(OH)·2H2O (2) and (H2en)2[α-PW11CuO39][Cu(en)2(H2O)2]0.5·1.5H2O (3) (en = ethylenediamine and dap = 1,2-diaminopropane). X-ray structural analyses demonstrate that 1 exhibits the first zigzag 1-D chain arrangement constructed from mono-copperII-substituted Dawson dimeric polyoxoanions [α2-P2W17CuO61]216− linked by [Cu(en)2]2+ bridges, whereas 2 and 3 display 1-D linear chain architectures made up of mono-copperII-substituted Keggin polyoxoanions [α-PCuW11O39]5− linked together via corner-sharing MO6 octahedra (M = Cu or W). Graphical Abstract  Reactions of monovacant Dawson or Keggin polyoxoanions with copper complexes under hydrothermal conditions lead to three novel 1-D chain-like inorganic- organic hybrid polyoxotungstates.   相似文献   

9.
Summary.  The synthesis, crystal structure and physical properties of the complex obtained from the reaction between the polyoxometalate anion [PMo12O40]3−, copper(II) and the ligand 1-(2-chloroethyl)tetrazole (teec) are described. This compound has been synthesized as a model for designing materials containing both magnetic polyoxometalate anions and iron(II) spin-crossover cations. The compound, with formula [Cu(teec)5]2[Cu(teec)6][PMo12O40]2·2H2O, consists of alternating layers of polyoxometalates and cationic complexes. Both, five and six coordinated Cu(II) ions are present, each positioned in different layers. Despite these layers having a similar width, the layer of pentacoordinated Cu(II) ions contains twice as many cationic complexes as the layer of hexacoordinated Cu(II) ions. This unusual coexistence of complexes with different coordination number is most likely caused by the steric hindrance induced by the bulky polyoxometalates in the layer of pentacoordinated Cu(II) which prevents the presence of a sixth teec ligand. Corresponding author. E-mail: haasnoot@chem.leidenuniv.nl Received June 5, 2002; accepted June 12, 2002  相似文献   

10.
The triplet nature of rare long-lived states of d0 metallocenes formed upon ligand-to-metal energy transfer was confirmed by studies of triplet-triplet charge transfer in biscyclopentadienyl complexes Cp2MCl2 (M = Zr (1), Hf (2)). The interaction between precatalysts and substrates of catalytic polymerization systems, viz., complexes 1 and 2 and unsaturated hydrocarbons (alkenes and dienes), was studied in the region of concentrations close to catalytic values. For organometallic π-complexes, it has been shown for the first time that, in the case of the unsaturated hydrocarbons, the efficiency of energy transfer obeys the Perrin equation. The process occurs at distances R 0 close to the diameter of the interacting molecules and is well described by the exchange-resonant mechanism of interaction. In the case of the cyclopentadiene-Cp2MCl2 (M = Zr, Hf) systems, R 0 = 14.6 Å. A linear relationship between the critical radius of the quenching sphere R 0 and the number of carbon atoms in a linear α-olefin has been revealed for the first time and evidences the formation of a π-complex between the precatalyst and substrate molecules. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 35–39, January, 2007.  相似文献   

11.
A complex of the composition KNa3[Fe3O(CH3COO)6(H2O)3]3 [α-P2W17Fe(H2O)O61]·32.5H2O (I) was obtained by interaction of FeCl3·6H2O and phosphotungstate K102-P2W17O61]·20H2O in an acetate buffer with a yield of 52%. Compound I was characterized by single crystal X-ray phase analysis and IR spectroscopy. In the crystal structure, the Na and K cations bind [Fe3O(CH3COO)6(H2O)3]+ trinuclear cations and [α-P2W17Fe(H2O)O61]7− heteropolytungstate anions into infinite zigzag chains. Original Russian Text Copyright ? 2005 by N. V. Izarova, M. N. Sokolov, A. V. Virovets, H. G. Platas, and V. P. Fedin __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 1, pp. 149–155, January–February, 2005.  相似文献   

12.
The visible light irradiation of the [(η5-C6H7)Fe(η-C6H6)]+ cation (1) in acetonitrile resulted in the substitution of the benzene ligand to form the labile acetonitrile species [(η5-C6H7)Fe(MeCN)3]+ (2). The reaction of 1 with ButNC in MeCN produced the stable isonitrile complex [(η5-C6H7)Fe(ButNC)3]+ (3). The photochemical reaction of cation 1 with pentaphosphaferrocene Cp*Fe(η-cyclo-P5) afforded the triple-decker cation with the bridging pentaphospholyl ligand, [(η5-C6H7)Fe(μ-η:η-cyclo-P5)FeCp*]+ (4). The latter complex was also synthesized by the reaction of cation 2 with Cp*Fe(η-cyclo-P5). The structure of the complex [3]PF6 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2088–2091, November, 2007.  相似文献   

13.
Lanthanide complexes of polyoxometalates, including the α2-P2W17O61 10− ligand, have been pioneered by Michael T. Pope, to whom this paper is dedicated. Examination of the solid-state and solution behavior of lanthanide complexes of the α2-P2W17O61 10− ligand are reported here to identify trends that will facilitate rational synthesis of hybrid organic lanthanide polyoxometalate complexes. Therefore, combining our data with that obtained by Pope and others a number of trends come into view. It is clear that there are two structural types for the 1:1 or 2:2 [Ln(H2O)X2-P2W17O61)]2 14− species. The early lanthanides show a “cap to cap” structure that allows the Ln ion to be 9 coordinate and accommodates the longer bond lengths. The mid-late lanthanides show a “cap to belt” structure that allows the lanthanides to be 8 coordinate; this structural type is appropriate for the shorter bond lengths of the later lanthanides. The 1:1⇌1:2 equilibrium, that was observed by Pope for the Ce(III) analog is prevalent for the early- mid lanthanides. This equilibrium is slightly dependent on pH; however, cations have a major influence on this equilibrium. Larger, poorly hydrated cations appear to favor the 1:2 species for the early to mid lanthanides. Cations do not appear to influence the equilibrium for the later lanthanides; for all counterions, the 1:1 species was stable with no trace of the 1:2 species. Stability constants, K1 and K2, for the early to mid lanthanides were measured in this study by a competitive method and compared well with other published stability constant determinations. We suggest that the stability constants are not only dependent on the strength of interaction of the Ln with the α2-P2W17O61 10− ligand, but are also significantly influenced by the medium. The medium may bias the equilibria of the early-mid lanthanides and later lanthanides. The log K1/log K2 ratios are very close, suggesting that it is difficult to separate the 1:1 and 1:2 Ln: α2-P2W17O61 10− species.Electronic Supplementary Material Supplementary material for this article is available at and is accessible for authorized users.This paper is dedicated to Professor Michael T. Pope in honor of his substantial and sustained contributions to polyoxometalate chemistry and his inspiration to scientists working in the field.  相似文献   

14.
Summary.  The two new compounds Mn(dien)2[MoS4] (1) and Mn(dien)2[Mo2O2S6] (2) (dien = diethylenetriamine) were prepared under solvothermal conditions. Both compounds were obtained as phase-pure products. The structures consist of new [Mn(dien)2]2+ cations and isolated tetrahedral [MoS4]2− (1) or [Mo2O2S6]2− (2) anions. Between the anions and the cations, hydrogen bonding is observed. Compound 1 crystallizes in the tetragonal space group I (a = 10.219(2), c = 9.259(2) ?, Z = 2), whereas 2 crystallizes in the monoclinic space group P21/c (a = 8.703(2), b = 18.390(4), c = 14.603(3) ?, β = 103.18(3)°, Z = 4). The thermal behaviour of the thiomolybdates was investigated using difference thermoanalysis (DTA) and thermogravimetry (TG). Both compounds decompose under argon with a single endothermic signal in the DTA curve (peak maximum: 252 (1) and 242°C (2)). Received November 5, 2001. Accepted December 27, 2001  相似文献   

15.
Abstract  Two novel inorganic–organic hybrid sandwich-type phosphotungstates [H2en][Ni(en)2]2[{(α-B-PW9O34)2Ni4(H2O)2}{Ni(en)2(H2O)}2] · 5H2O (1) and [Ni(en)2][Ni(en)2(H2O)2][{(α-B-PW9O34)2Ni4(Hen)2}{Ni(en)2(H2O)}2] · 10H2O (2) (en = ethylenediamine) have been synthesized by the hydrothermal reactions of trivacant precursors Na9[α-A-PW9O34] · 7H2O/Na12[α-P2W15O56] · 18H2O with NiCl2 · 6H2O in the presence of en and structurally characterized by IR spectra, elemental analyses and thermogravimetric analyses. X-ray crystallographic analyses indicate that 1 is made up of inorganic polyoxoanions [Ni4(H2O)2(α-B-PW9O34)2]10– decorated by nickel-organoamine groups, while 2 is constructed from inorganic–organic hybrid polyoxoanions [(α-B-PW9O34)2Ni4(Hen)2]8– decorated by nickel-organoamine groups. Graphical Abstract   Hydrothermal Synthesis and Structural Characterization of Two Organic–Inorganic Hybrids based on Sandwich-type Polyoxometalates Bing Li, Zhao Dan, Shou-Tian Zheng, Guo-Yu Yang   相似文献   

16.
The methods of cyclic voltammetry, electrolysis, and spectrophotometry were used to study electrochemical properties of (TCAS + Fe3+ + dipy), (CCAS + Fe3+ + dipy), and (CCAS + Fe3+ + [Co(dipy)3]3+) triple systems (where TCAS is n-sulfonatothiacalix[4]arene, CCAS is tetracarboxylate n-sulfonatocalix[4]arene, and dipy = α,α′-dipyridyl) in an aqueous solution. One-electron reduction of Fe(III) in the (TCAS + Fe3+ + dipy) system at pH 2.5 results in electroswitching of iron ions from the lower TCAS ring to the upper ([Fe(dipy)3]2+). Reverse electrochemical switching of the system is impossible due to mediator ([Fe(dipy)3]2+/3+) oxidation of TCAS. Reverse electroswitching of Fe(III) ions from unbound to bound state as ([Fe(dipy)3]2+) with CCAS has been revealed in the system (CCAS + Fe3+ + dipy) (pH 1.7) upon single-electron transfer, whereas reversible electroswitching by the upper rim of CCAS from one complex ion ([Co(dipy)3]3+) to another ([Fe(dipy)3]2+) has been demonstrated in the system ([Co(dipy)3]3+ + CCAS + Fe3+ upon double-electron transfer. In all systems, electric switching was accompanied by synchronous color switching.  相似文献   

17.
The heteropolytungstate (NH4)20[Na2(H2O)2Ni(H2O)5{Ni(H2O)}2As4W40O140] · 61H2O is obtained by the reaction of Na27[NaAs4W40O140] · 60H2O with NiCl2 · 6H2O and NH4Cl in pH≈4.0. The structure and chemical composition are determined by X-ray diffraction analysis and element analysis. The crystal data and main structure refinement are: a = 1.33135(18) nm, b = 1.9722(3) nm, c = 3.6430(5) nm, α = 78.010(2)°, β = 82.145(2)δ, γ = 74.385(2)°, V = 8.978(2) nm3, triclinic crystal system, space group: P1, Z = 2, R1 = 0.0512, and wR2 = 0.0684(I >2σ). The four S2 sites of the big cyclic ligand [As4W40O140]28- are occupied by two Na+ and two Ni2+ respectively, and each site supplies four Od coordinating to metal ion. The coordination number of Ni2+ is six, and that of two Na+ is five and six respectively. The third Ni2+ locates outside the cyclic [As4W40O140]28- and connects with one Od, and its coordination number is six.  相似文献   

18.
Three chromium(III) complexes with asparagine (Asn) and histidine (His) of the [Cr(ox)2(Aa)]2− type, where Aa = N,O–Asn, N,O–His or N,N′–His, were obtained and characterized in solution. The complexes with N,O–Aa undergo acid-catalysed aquation to give a free amino acid and cis-[Cr(ox)2(H2O)2], whereas the complex with N,N′–His undergoes parallel reaction paths: (1) isomerization to the N,O–His complex and (2) liberation of an oxalate ligand. Kinetics of the N,O–Aa complexes in HClO4 media were studied spectrophotometrically under pseudo-first-order conditions. The absorbance changes were attributed to the chelate ring opening at the Cr–N bond. The linear dependence of rate constants on [H+] was established, and a mechanism for the chelate ring cleavage was postulated. The existence of a metastable intermediate with O-monodentate Aa ligand was proved experimentally. Effect of [Cr(ox)2(Aa)]2− on 3T3 fibroblasts proliferation was studied. The tests revealed low cytotoxicity of the complexes. Complexes with Ala, His and Cys are good candidates for biochromium sources.  相似文献   

19.
A new coordination polymer constructed from Dawson-type polyoxotungstate and transition metal complexes [Cu(H2Biim)2]2H2P2W18O2 · 2C2H5OH · 2H2O (H2Biim = 2,2′-diimidazole) (I) have been prepared under hydrothermal conditions and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectrum, and TG analysis. The crystal structure of I contains a Dawson-type [α-P2W18O62]6− polyanion, two metal coordination cations [Cu(H2Biim)2]2+, two protons, two ethanol molecules, and two lattice water molecules. Interestingly, a three-dimensional supramolecular framework is formed via N-H⋯O hydrogen bonds. Complex I crystallizes in the monoclinic system, space group C2/c with a = 22.742(3), b = 14.780(2), c = 29.637(5) ?, β = 111.199(2)°, V = 9288(2) ?3, T = 296(2) K, Z = 4, μ = 22.774 mm−1, GOOF = 1.017, R 1 = 0.0590 and wR 2 = 0.1394.  相似文献   

20.
The rates of the electron transfer reaction of l-cysteine and thioglycolic acid with the polyoxometalate, [PVVW11O40]4−, have been measured spectrophotometrically in aqueous acid medium. The polyoxometalate oxidizes cysteine to cystine and thioglycolic acid to dithioglycolic acid and gets reduced to heteropoly blue, [PVIVW11O40]5−. The order of the reaction with respect to oxidant is one, whereas the reaction shows second order dependence on the substrates. The rate–pH profile shows that both the unionized and ionized thiol groups of the substrates are active species involved in electron transfer. A suitable mechanism has been proposed for the title reaction based on the results of kinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号