首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Luo  WS Li  P Xu  LY Zhang  ZN Chen 《Inorganic chemistry》2012,51(17):9508-9516
A Zn(2+)-responsive bimodal magnetic resonance imaging (MRI) and luminescence imaging probe GdL was synthesized. The relaxivity and luminescence properties were examined. In the presence of 0.5 equiv of Zn(2+), the longitudinal relaxivity is increased from 3.8 mM(-1) s(-1) to 5.9 mM(-1) s(-1) at 23 MHz and 25 °C with 55% enhancement, whereas the fluorescence exhibits a 7-fold increase. The Zn(2+) responsive imaging probe shows favorable selectivity and tolerance over a variety of biologically relevant anions and metal ions in physiological pH range for both relaxivity and luminescence. In vitro phantom images and confocal fluorescence images in living cells show that the bimodal Zn(2+) probe can effectively enhance T(1)-weighted imaging contrast and luminescence imaging effect through Zn(2+) coordination with excellent cellmembrane permeability and biocompatibility. Spectral and electrospray ionization mass spectrometry (ESI-MS) studies indicate that two different Zn(2+)-bound species, (GdL)(2)Zn and GdLZn, are formed when 0.5 and 1 equiv of Zn(2+) are bound to GdL complex, respectively. Crystal structural determination and dysprosium-induced (17)O NMR shift (DIS) experiment demonstrate that the increased molecular weight and the improved molecular rigidity upon complexation of Zn(2+) with GdL is the primary factor for relaxivity enhancement. Significant enhancement of the luminescence is due to a heavy atom effect and much increased molecular rigidity upon Zn(2+) binding to 8-sulfonamidoquinoline chromophore.  相似文献   

2.
A rhodamine B derivative 4 containing a highly electron-rich S atom has been synthesized as a fluorescence turn-on chemodosimeter for Cu(2+). Following Cu(2+)-promoted ring-opening, redox and hydrolysis reactions, comparable amplifications of absorption and fluorescence signals were observed upon addition of Cu(2+); this suggests that chemodosimeter 4 effectively avoided the fluorescence quenching caused by the paramagnetic nature of Cu(2+). Importantly, 4 can selectively recognize Cu(2+) in aqueous media in the presence of other trace metal ions in organisms (such as Fe(3+), Fe(2+), Cu(+), Zn(2+), Cr(3+), Mn(2+), Co(2+), and Ni(2+)), abundant cellular cations (such as Na(+), K(+), Mg(2+), and Ca(2+)), and the prevalent toxic metal ions in the environment (such as Pb(2+) and Cd(2+)) with high sensitivity (detection limit < or =10 ppb) and a rapid response time (< or =1 min). Moreover, by virtue of the chemodosimeter as fluorescent probe for Cu(2+), confocal and two-photon microscopy experiments revealed a significant increase of intracellular Cu(2+) concentration and the subcellular distribution of Cu(2+), which was internalized into the living HeLa cells upon incubation in growth medium supplemented with 50 muM CuCl(2) for 20 h.  相似文献   

3.
Singh RP 《Talanta》1972,19(11):1421-1427
A study has been made of a new masking procedure for highly selective complexometric determination of copper(II), based on decomposition of the copper-EDTA complex at pH 5-6. Among the various combinations of masking agents tried, ternary masking mixtures comprising a main complexing agent (thiourea), a reducing agent (ascorbic acid) and an auxiliary complexing agent (thiosemicarbazide or a small amount of 1,10-phenanthroline or 2,2'-dipyridyl) have been found most suitable. An excess of EDTA is added and the surplus EDTA is back-titrated with lead (or zinc) nitrate with Xylenol Orange as indicator (pH 5-6). A masking mixture is then added to decompose the copper-EDTA complex and the liberated EDTA is again back-titrated with lead (or zinc) nitrate. The following cations do not interfere: Ag(+), Hg(2+), Pb(2+), Ni(2+), Bi(3+), As(3+), Al(3+), Sb(3+), Sn(4+), Cd(2+), Co(2+), Cr(3+) and moderate amounts of Fe(3+) and Mn(2+). The notable feature is that consecutive determination of Hg(2+) and Cu(2+) can be conveniently carried out in the presence of other cations.  相似文献   

4.
Ohki A  Kim JS  Suzuki Y  Hayashita T  Maeda S 《Talanta》1997,44(6):1131-1135
Lipophilic acyclic dibenzopolyether diamides, 12 kinds, have been designed to prepare solvent polymeric membrane ion-selective electrodes (ISEs) for Pb(2+). The ionophores include 1,5-bis[2-(N,N-dialkylcarbamoylmethoxy)phenoxy]-3-oxapentanes1-4, 1,5-bis[2-(N,N-dialkylcarbamoylpentadecyloxy)phenoxy]-3-oxapentanes 5-8, and 1,2-bis[2-(2'-N,N-dialkylcarbamoylpentadecyloxy)phenoxy]ethanes 9-12. Linear response concentration range of the ISE based on 9 is 3 x 10(-2) - 1 x 10(-6) M of Pb(2+) (average slope = 28.5 mV decade(-1)). Potentiometric selectivities of the ISEs based on 1-12 for Pb(2+) over other heavy metal cations, alkali metal cations, and alkaline earth metal cations have been assessed. These ISEs exhibit remarkably high selectivities for Pb(2+) relative to heavy metal cations, such as Cu(2+), Fe(2+), and Ni(2+), the selectivity coefficients (K(Pot)(Pb,Cu)) being 5 x 10(-5) - 6 x 10(-5) for 1-4 and ca. 6 x 10(-4) for 9. For the Pb(2+) selectivities over alkali metal cations, such as Na(+) and K(+), 9 which has an ethylene glycol spacer and a N,N-diethyl group is superior to other dibenzopolyether diamide ionophores 1-8 and 10-12.  相似文献   

5.
The synthesis of a new oxaaza macrocyclic ligand, L, derived from O(1),O(7)-bis(2-formylphenyl)-1,4,7-trioxaheptane and tren containing an amine terminal pendant arm, and its metal complexation with alkaline earth (M = Ca(2+), Sr(2+), Ba(2+)), transition (M = Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+)), post-transition (M = Pb(2+)), and Y(3+) and lanthanide (M = La(3+), Er(3+)) metal ions are reported. Crystal structures of [H(2)L](ClO(4))(2).3H(2)O, [PbL](ClO(4))(2), and [ZnLCl](ClO(4)).H(2)O are also reported. In the [PbL] complex, the metal ion is located inside the macrocyclic cavity coordinated by all N(4)O(3) donor atoms while, in the [ZnLCl] complex, the metal ion is encapsulated only by the nitrogen atoms present in the ligand. pi-pi interactions in the [H(2)L](ClO(4))(2).3H(2)O and [PbL](ClO(4))(2) structures are observed. Protonation and Zn(2+), Cd(2+), and Cu(2+) complexation were studied by means of potentiometric, UV-vis, and fluorescent emission measurements. The 10-fold fluorescence emission increase observed in the pH range 7-9 in the presence of Zn(2+) leads to L as a good sensor for this biological metal in water solution.  相似文献   

6.
A weakly fluorescent thiosemicabazone (L(1)H) was found to be a selective optical and "turn-on" fluorescent chemodosimeter for Cu(2+) ion in aqueous medium. A significant fluorescence enhancement along with change in color was only observed for Cu(2+) ion; among the other tested metal ions (viz. Na(+), K(+), Mg(2+), Ca(2+), Cr(3+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), Ag(+), Ni(2+), Co(2+), Fe(3+) and Mn(2+)). The Cu(2+) selectivity resulted from an oxidative cyclization of the weak fluorescent L(1)H into highly fluorescent rigid 4,5-dihydro-5,5-dimethyl-4-(naphthalen-5-yl)-1,2,4-triazole-3-thione (L(2)). The signaling mechanism has been confirmed by independent synthesis with detail characterization of L(2).  相似文献   

7.
An efficient water soluble fluorescent Al(3+) receptor, 1-[[(2-furanylmethyl)imino]methyl]-2-naphthol (1-H) was synthesized and characterized by physico-chemical and spectroscopic tools along with single crystal X-ray crystallography. High selectivity and affinity of 1-H towards Al(3+) in HEPES buffer (DMSO/water: 1/100) of pH 7.4 at 25 °C showed it to be suitable for detection of intracellular Al(3+) by fluorescence microscopy. Metal ions, viz. alkali (Na(+), K(+)), alkaline earth (Mg(2+), Ca(2+)), and transition-metal ions (Ni(2+), Zn(2+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Cr(3+/6+), Hg(2+)) and Pb(2+), Ag(+) did not interfere. The lowest detection limit for Al(3+) was calculated to be 6.03 × 10(-7) M in 100 mM HEPES buffer (DMSO/water: 1/100). Theoretical calculations have also been included in support of the configuration of the probe-aluminium complex.  相似文献   

8.
A new 4-bromo-1,8-naphthalimide-labelled polyamidoamine (PAMAM) dendrimer from zero generation has been synthesised and characterised. Its functional characteristics, determined in acetonitrile solvent are discussed. The ability of the dendrimer to detect metal cations has been evaluated in acetonitrile by monitoring the quenching of the fluorescence intensity. Different metal cations have been tested Co(2+), Ni(2+), Cu(2+) and Fe(3+) for the purpose. The results have shown clearly that only Fe(3+) could be efficiently detected using the dendrimer.  相似文献   

9.
A chiral polymer incorporating an (R,R)-salen moiety was synthesized by the polymerization of (R,R)-1,2-diaminocyclohexane with 2,5-dibutoxy-1,4-di(salicyclaldehyde)-1,4-diethynyl-benzene by a nucleophilic addition-elimination reaction. The fluorescence responses of the (R,R)-salen-based polymer toward various metal ions were investigated by fluorescence spectra. Compared with other cations, such as Na(+), K(+), Mg(2+), Ca(2+), Mn(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Ag(+), Cd(2+), Hg(2+), and Pb(2+), Zn(2+) can lead to a pronounced fluorescence enhancement as high as 7.8-fold together with an obvious blue-shift change of the chiral polymer. More importantly, the fluorescent color of the polymer changed to bright blue instead of weak yellow after addition of Zn(2+), which can be easily detected by the naked eye. The results indicate that this kind of chiral polymer, incorporating an (R,R)-salen moiety as a receptor in the main chain backbone, can exhibit high sensitivity and selectivity for Zn(2+) recognition.  相似文献   

10.
Contamination of the environment with heavy metal ions has been an important concern throughout the world for decades. Driven by the need to detect trace amounts of mercury in environmental samples, this article demonstrates for the first time that nonlinear optical (NLO) properties of MPA-HCys-PDCA-modified gold nanoparticles can be used for rapid, easy and reliable screening of Hg(II) ions in aqueous solution, with high sensitivity (5 ppb) and selectivity over competing analytes. The hyper Rayleigh scattering (HRS) intensity increases 10 times after the addition of 20 ppm Hg(2+) ions to modified gold nanoparticle solution. The mechanism for HRS intensity change has been discussed in detail using particle size-dependent NLO properties as well as a two-state model. Our results show that the HRS assay for monitoring Hg(II) ions using MPA-HCys-PDCA-modified gold nanoparticles has excellent selectivity over alkali, alkaline earth (Li(+), Na(+), K(+), Mg(2+), Ca(2+)), and transition heavy metal ions (Pb(2+), Pb(+), Mn(2+), Fe(2+), Cu(2+), Ni(2+), Zn(2+), Cd(2+)).  相似文献   

11.
A new monostyryl boron dipyrromethene derivative (MS1) appended with two triazole units indicates the presence of Hg(2+) among other metal ions with high selectivity by color change and red emission. Upon Hg(2+) binding, the absorption band of MS1 is blue-shifted by 29 nm due to the inhibition of the intramolecular charge transfer from the nitrogen to the BODIPY, resulting in a color change from blue to purple. Significant fluorescence enhancement is observed with MS1 in the presence of Hg(2+); the metal ions Ag(+), Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(2+), Fe(3+), K(+), Mg(2+), Mn(2+), Ni(2+), Pb(2+), and Zn(2+) cause only minor changes in the fluorescence of the system. The apparent association constant (K(a)) of Hg(2+) binding in MS1 is found to be 1.864 × 10(5) M(-1). In addition, fluorescence microscopy experiments show that MS1 can be used as a fluorescent probe for detecting Hg(2+) in living cells.  相似文献   

12.
Two new rhodamine based probes 1 and 2 for the detection of Fe(3+) were synthesized and their selectivity towards Fe(3+) ions in the presence of other competitive metal ions tested. The probe 1 formed a coloured complex with Fe(3+) as well as Cu(2+) ions and revealed the lack of adequate number of coordination sites for selective complexation with Fe(3+). Incorporation of a triazole unit to the chelating moiety of 1 resulted in the probe 2, that displayed Fe(3+) selective complex formation even in the presence of other competitive metal ions like Li(+), Na(+), K(+), Cu(2+), Mg(2+), Ca(2+), Sr(2+), Cr(3+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+). The observed limit of detection of Fe(3+) ions (5 × 10(-8) M) confirmed the very high sensitivity of 2. The excellent stability of 2 in physiological pH conditions, non-interference of amino acids, blood serum and bovine serum albumin (BSA) in the detection process, and the remarkable selectivity for Fe(3+) ions permitted the use of 2 in the imaging of live fibroblast cells treated with Fe(3+) ions.  相似文献   

13.
A poly(amine ester) dendrimer with naphthyl units (G1N6) has been synthesized as a fluorescent chemosensor for metal ions. We investigated the metal-ion recognition of G1N6 by adding each of Ag(+), Al(3+), Ba(2+), Ca(2+), Cd(2+), Co(2+), Cu(2+), Fe(3+), Mg(2+), Ni(2+), and Zn(2+) in acetonitrile solution. Large changes were observed in the fluorescence spectra of G1N6 upon the addition of Al(3+), Cu(2+), and Zn(2+).  相似文献   

14.
In the present study ion exchange of Pb(2+), Cu(2+), Fe(3+), and Cr(3+) on natural Greek clinoptilolite was examined in terms of selectivity toward the above heavy metals in single- and multicomponent solutions in batch systems. Also examined are the influence of clinoptilolite on solution acidity and the effect of acidity on the ion exchange process. Clinoptilolite increases solution acidity due to the exchange of H(+) cations with the cations initially present in its structure. H(+) cations should be considered as competitive ones in ion exchange processes, and consequently ion exchange of metals is favored at high acidity values. Cu(2+) and Cr(3+) are the most sensitive cations with respect to acidity. Selectivity determination demonstrates that the selectivity at total concentration 0.01 N and acidity 2 in both single- and multicomponent solutions is following the order Pb(2+)>Fe(3+)>Cr(3+) > or =Cu(2+). This order is set since the first days of equilibration. However, Cu(2+) shows remarkable changes in selectivity and generally its uptake and selectivity are increasing with time. On the other hand selectivity in single metal solutions where acidity is not adjusted is following the order Pb(2+)>Cr(3+)>Fe(3+) congruent with Cu(2+).  相似文献   

15.
Sheng R  Wang P  Gao Y  Wu Y  Liu W  Ma J  Li H  Wu S 《Organic letters》2008,10(21):5015-5018
A coumarin-based colorimetric chemosensor 1 was designed and synthesized. It exhibits good sensitivity and selectivity for the copper cation over other cations such as Zn(2+), Cd(2+), Pb(2+), Co(2+), Fe(2+), Ni(2+), Ag(+), and alkali and alkaline earth metal cations both in aqueous solution and on paper-made test kits. The change in color is very easily observed by the naked eye in the presence of Cu(2+) cation, whereas other metal cations do not induce such a change. The quantitative detection of Cu(2+) was preliminarily examined.  相似文献   

16.
Two series of monoionic (M) kaolinites (M = H(+), Ca(2+), Cu(2+), Zn(2+), Al(3+), and Fe(3+)) were prepared from a natural Brazilian clay (S?o Sim?o clay, SP): series A, dried under vacuum at 25 degrees C, and series B, dried under vacuum at 25 degrees C. The natural clay was characterized by elemental analysis, cation exchange capacity, X-ray diffractometry, differential thermal analysis, and surface area measurements (BET). The interactions of M,M-dimethylacetamide and pyridine with these (M) kaolinites were studied by adsorption isotherms, titration calorimetry, and infrared spectroscopy (for pyridine only). The results indicated a coordinative interaction between M,M-dimethylacetamide and (M) kaolinites. For the interactions between pyridine and (M) kaolinites, the formation of hydrogen bonds (M = Al(3+), Fe(3+)), hydrogen and coordinative bonds (M = Cu(2+), Zn(2+)), and ionic pairs (M = H(+), Ca(2+)) was observed. For the pyridine-(Cu) kaolinite system, a substitution of water coordinated to Cu(2+) by pyridine was established.  相似文献   

17.
Zhang X  Jing X  Liu T  Han G  Li H  Duan C 《Inorganic chemistry》2012,51(4):2325-2331
A unique gadolinium complex, Nap-DO3A-Gd, comprising a naphthylamine luminescent moiety, a di-2-picolylamine (DPA) binding chelator, and a 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (DO3A) moiety has been designed and synthesized as a dual-functional probe for selective magnetic resonance imaging and fluorescent sensing of copper(II) in living cells. Nap-DO3A-Gd exhibited a turn-on manner of relaxivity changes and a fluorescent quenching toward Cu(2+). Through the introduction of naphthalamide into the Gd(3+) contrast agent platform to restrict the coordination ability of the DPA chelator and with Gd(3+) coordinating to the DPA moiety to turn away the interferences of other metal cations from Cu(2+) detection, the probe featured selective relaxivity changes toward Cu(2+) over other metal ions and brought unique Cu(2+)-specific luminescent responses. The probe was water-soluble with the luminescent detection limit established at 6 ppb and was successfully used for luminescence imaging detection of copper(II) in living cells. The results demonstrated the efficiency and advantage of our approach in the development of a dual-modality image.  相似文献   

18.
Interaction of the lacunary [alpha-XW(9)O(33)](9-) (X = As(III), Sb(III)) with Fe(3+) ions in acidic, aqueous medium leads to the formation of dimeric polyoxoanions, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)) in high yield. X-ray single-crystal analyses were carried out on Na(6)[Fe(4)(H(2)O)(10)(beta-AsW(9)O(33))(2)] x 32H(2)O, which crystallizes in the monoclinic system, space group C2/m, with a = 20.2493(18) A, b = 15.2678(13) A, c = 16.0689(14) A, beta = 95.766(2) degrees, and Z = 2; Na(6)[Fe(4)(H(2)O)(10)(beta-SbW(9)O(33))(2)] x 32H(2)O is isomorphous with a = 20.1542(18) A, b = 15.2204(13) A, c = 16.1469(14) A, and beta = 95.795(2) degrees. The selenium and tellurium analogues are also reported, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](4-) (X = Se(IV), Te(IV)). They are synthesized from sodium tungstate and a source of the heteroatom as precursors. X-ray single-crystal analysis was carried out on Cs(4)[Fe(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)] x 21H(2)O, which crystallizes in the triclinic system, space group P macro 1, with a = 12.6648(10) A, b = 12.8247(10) A, c = 16.1588(13) A, alpha = 75.6540(10) degrees, beta = 87.9550(10) degrees, gamma = 64.3610(10) gamma, and Z = 1. All title polyanions consist of two (beta-XW(9)O(33)) units joined by a central pair and a peripheral pair of Fe(3+) ions leading to a structure with idealized C(2h) symmetry. It was also possible to synthesize the Cr(III) derivatives [Cr(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)), the tungstoselenates(IV) [M(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)]((16)(-)(4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), and Hg(2+)), and the tungstotellurates(IV) [M(4)(H(2)O)(10)(beta-TeW(9)O(33))(2)]((16-4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)), as determined by FTIR. The electrochemical properties of the iron-containing species were also studied. Cyclic voltammetry and controlled potential coulometry aided in distinguishing between Fe(3+) and W(6+) waves. By variation of pH and scan rate, it was possible to observe the stepwise reduction of the Fe(3+) centers.  相似文献   

19.
The efficiency of Zn(2+), Cu(2+), Ni(2+), Co(2+), Fe(2+) or Mn(2+) labeling of the conformational and charge states of lysozyme was studied in H(2)O solvent at pH 2.5-6.8. Labeling of lysozyme was conducted with 50 M, 100 M and 500 M excess of the metal ion, resulting in the number of metal ions attached to lysozyme increasing two-fold over this range. At pH 6.2-6.8, Zn(2+), Cu(2+), Ni(2+), Co(2+) and Mn(2+) labeled the highly folded 7+ conformer and the 8+ and 9+ partially unfolded conformers of lysozyme with the same number of metal ion tags, with only Fe(2+) exhibiting no labeling. Lysozyme conserved its charge after metal ion labeling which shows at each charge state the divalent metal ion is replacing two protons. As the pH is lowered to 4.7-5.0 and 2.5-2.9, the labeling of lysozyme by Zn(2+), Cu(2+), Ni(2+), Co(2+) or Mn(2+) decreased in efficiency due to increased competition from protons for the aspartate and glutamate binding sites. The metal ions preferentially labeled the highly folded 7+ and partially unfolded 8+ conformers, but labeling decreased as the charge of lysozyme increased. In contrast to the other metal ions, Fe(2+) exhibited labeling of lysozyme only at the lowest pH of 2.8. At higher pH, the oxidation of Fe(2+) and formation of hydroxy-bridged complexes probably make the Fe(2+) unreactive towards lysozyme.  相似文献   

20.
通过原子吸收和等离子体原子发射光谱法,研究了6种不同分散剂对14种煤溶出Ca2+、Mg2+、Fe3+(Fe2+)、Al3+、SiO32-离子的影响。结果表明,煤中溶出高价离子的数量,主要取决于分散剂与高价离子间的相互作用特征,以及矿物质的种类和数量。煤在不同分散剂水溶液中溶出高价离子的多少,并不单纯与水煤浆(CWS)的流变性或煤的成浆性具有相关性。煤中矿物质对CWS性质的影响,是多种因素综合作用的结果,溶出离子的种类和数量只是其中的重要因素之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号