首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brunner C  Wahnes C  Vogel V 《Lab on a chip》2007,7(10):1263-1271
Exploiting biological motors ex vivo to transport and distribute cargo with high spatial control, as done by cells, requires that we learn how molecular shuttles (microtubules propelled by kinesins) can pick up cargo from defined surface regions (loading stations). The main challenge of building microfabricated cargo loading stations is to adjust the sum of non-covalent interactions such that the station stably holds on to the cargo under static conditions, but allows for transfer when a gliding microtubule collides with station-bound cargo and starts to pull on it. Successful pick-up of cargo could be observed using biotin-anti-biotin interactions and hybridized oligonucleotides. The effect of different tethering chemistries on the efficiency of cargo pick-up was tested.  相似文献   

2.
Pulsed neutron induced activation analysis is a nondestructive technique to detect threats hidden in bulk objects such as cargo pallets, trucks, etc. Isotopic content of cargo can be measured by counting photons emitted with characteristic energies as a result of neutron induced reactions within cargo’s materials. Neutron and gamma radiation transport in active interrogation system consisting of a 14-MeV neutron source, photon detector, and a cargo truck was analyzed with MCNPX code. Gamma ray signatures of cargo with hidden explosive threat were analyzed during the neutron pulse and between neutron pulses for varying system’s geometry and material composition of cargo.  相似文献   

3.
Efficient and flexible cargo manipulation at the micro/nanoscale is key to the realization of an array of applications ranging from drug delivery, directed self-assembly, and environmental remediation to self-repair. In this review, we highlight recent advances in the label-free manipulation of cargo by microscale carriers, commonly referred to as “micromotors” Label-free manipulation eliminates the need for tagging of cargo, enabling on-demand dynamic selectivity. Primary mechanisms include electrical, optical, hydrodynamical, and mechanical forcing. For the carrier, both self-propelling active particles moving in a uniform field and smart passive structures moving in a field gradient are considered with the caveat that cargo manipulation is “micromotor-mediated,” i.e., cargo is not manipulated directly by the applied fields but only through its interaction with the carrier. We compare the manipulation techniques in terms of selectivity, cargo size, material, and suspending medium. We conclude by summarizing the existing challenges and future prospects.  相似文献   

4.
Summary In view of the terrorist threats to the United States, the country needs to consider new vectors and weapons related to nuclear and radiological threats against our homeland. The traditional threat vectors, missiles and bombers, have expanded to include threats arriving through the flow of commerce. The new commerce-related vectors include: sea cargo, truck cargo, rail cargo, air cargo, and passenger transport. The types of weapons have also expanded beyond nuclear warheads to include radiation dispersal devices (RDD) or “dirty' bombs. The consequences of these nuclear and radiological threats are both economic and life threatening. The defense against undesirable materials entering our borders involves extensive radiation monitoring at ports of entry. The radiation and other signatures of potential nuclear and radiological threats are examined along with potential sensors to discover undesirable items in the flow of commerce. Techniques to improve radiation detection are considered. A strategy of primary and secondary screening is proposed to rapidly clear most cargo and carefully examine suspect cargo.  相似文献   

5.
Summary In view of the terrorist threats to the United States, the country needs to consider new vectors and weapons related to nuclear and radiological threats against our homeland. The traditional threat vectors, missiles and bombers, have expanded to include threats arriving through the flow of commerce. The new commerce-related vectors include: sea cargo, truck cargo, rail cargo, air cargo, and passenger transport. The types of weapons have also expanded beyond nuclear warheads to include radiation dispersal devices (RDD) or “dirty' bombs. The consequences of these nuclear and radiological threats are both economic and life threatening. The defense against undesirable materials entering our borders involves extensive radiation monitoring at ports of entry. The radiation and other signatures of potential nuclear and radiological threats are examined along with potential sensors to discover undesirable items in the flow of commerce. Techniques to improve radiation detection are considered. A strategy of primary and secondary screening is proposed to rapidly clear most cargo and carefully examine suspect cargo.  相似文献   

6.
Protein‐based encapsulation systems have a wide spectrum of applications in targeted delivery of cargo molecules and for chemical transformations in confined spaces. By engineering affinity between cargo and container proteins it has been possible to enable the efficient and specific encapsulation of target molecules. Missing in current approaches is the ability to turn off the interaction after encapsulation to enable the cargo to freely diffuse in the lumen of the container. Separation between cargo and container is desirable in drug delivery applications and in the use of capsids as catalytic nanoparticles. We describe an encapsulation system based on the hepatitis B virus capsid in which an engineered high‐affinity interaction between cargo and capsid proteins can be modulated by Ca2+. Cargo proteins are loaded into capsids in the presence of Ca2+, while ligand removal triggers unbinding inside the container. We observe that confinement leads to hindered rotation of cargo inside the capsid. Application of the designed container for catalysis was also demonstrated by encapsulation of an enzyme with β‐glucosidase activity.  相似文献   

7.
Directed delivery of mesoscaled cargo—for example, nanocrystals, proteins, or nucleic acids—to cells using polymer vectors impacts numerous biomedical fields. We introduce here the concept of dynamic complementarity as a simple, yet powerful approach to control the rate of mesoscaled cargo dissociation from colloidal polymer vectors once inside the cytosol. By tuning the degree of electrostatic reciprocity between the polymer vector and its cargo, it is possible to both deliver and release large cargo in live cells in a controllable manner over both long and short periods, pointing to a highly modular materials platform with molecularly tailored properties suited to task. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 256–264  相似文献   

8.
The syntheses of phosphatidylserine (PS) conjugates are described, including fluorescent derivatives for potential cellular delivery and bioimaging applications. Installation of terminal functional groups (amine, thiol, or alkyne) onto the sn-2 chain provides reactive sites for bio-orthogonal conjugation of cargo with suitably protected PS derivatives. An amine-containing PS forms amide bonds with peptidic cargo, a thiol derivative is designed for conjugation to cargo that contain alpha-halo carbonyls or Michael acceptors, and the terminal alkyne PS analogue permits "click" conjugation with any azide-tagged molecule. This latter conjugation method is quite versatile as it can be performed without PS headgroup protection, in aqueous media, and with acid-labile cargo.  相似文献   

9.
A pH‐controlled delivery system based on mesoporous silica nanoparticles (MSNs) was constructed for dual‐cargo selective release. To achieve a better controlled‐release effect, a modified sol–gel method was employed to obtain MSNs with tunable particle and pore sizes. The systems selectively released different kinds of cargo when stimulated by different pH values. At the lower pH value (pH 2.0) only one kind of cargo was released from the MSNs, whereas at a higher pH value (pH 7.0) only the other kind of cargo was released from the MSNs. The multi‐cargo delivery system has brought the concept of selective release to new advances in the field of functional nanodevices and allows more accurate and controllable delivery of specific cargoes, which is expected to have promising applications in nanomedicine.  相似文献   

10.
Polyelectrolyte capsules with metal nanoparticles in their walls and fluorescently labeled polymers as cargo inside their cavity were prepared. Capsules were ingested by living cells with no uncontrolled release of the cargo upon the incorporation process. Photoinduced heating of the metal nanoparticles in the capsule walls lead to rupture of the capsule walls, and the polymeric cargo was released to the whole cytosol. Viability tests demonstrate that opening of capsules at moderate light intensities does not impair the cellular metabolism, whereas capsule opening at high light intensities ultimately leads to cell death.  相似文献   

11.
Nanoengineered poly(methacrylic acid) hydrogel capsules (PMA HCs) are promising candidate carriers for biomedical applications, especially in the areas of drug delivery, encapsulated catalysis, and cell mimicry. The assembly, stability, and degradation of these carriers, as well as their use for the encapsulation of therapeutics, have received considerable attention. However, tailoring the permeability properties of PMA HCs to various types of cargo remains largely unexplored. Herein, we investigate fundamental parameters that govern the structural integrity and the capability of PMA HCs to encapsulate macromolecular cargo. The thiol content of the constituent polymers and the number of deposited polymer layers are shown to be key factors in controlling cargo retention within the PMA HCs. We further introduce a new strategy to achieve disulfide cross-linking for PMA HCs via a thiol-disulfide exchange in order to obtain capsules with superior cargo retention characteristics. Finally, we provide evidence for the semipermeable nature of PMA HCs based on the charge of the solutes and demonstrate that rational design of these systems can yield capsules with specific cargo retention properties. This work contributes toward the development of multilayered polymer capsules and PMA HCs and associated applications in biomedicine.  相似文献   

12.
We illustrate the use of catalytic nanowire motors for directional motion and microscale transport of cargo within microfluidic channel networks. The CNT-based synthetic nanomotor can propel a large cargo load at high speeds through predetermined paths and junctions of the microchannel network. The magnetic properties of the nickel-containing nanomotors offer controlled cargo manipulations, including en-route load, drag, and release. Such use of synthetic nanomachines can lead to chemically powered versatile laboratory-on-a-chip devices performing a series of tasks simultaneously or sequentially.  相似文献   

13.
The elegant geometry of viruses has inspired bio-engineers to synthetically explore the self-assembly of polyhedral capsids employed to protect new cargo or change an enzymatic microenvironment. Recently, Yang and co-workers used DNA nanotechnology to revisit the icosahedral capsid structure of the phiX174 bacteriophage and reloaded the original viral genome as cargo into their fully synthetic architecture. Surprisingly, when using a favorable combination of structural rigidity and dynamic multivalent cargo entrapment, the synthetic particles were able to infect non-competent bacterial cells and produce the original phiX174 bacteriophage. This work presents an exciting new direction of DNA nanotech for bio-engineering applications which involve bacterial interactions.  相似文献   

14.
Phosphorus-based self-immolative (SI) linkers offer a wide range of applications, such as smart materials and drug-delivery systems. Phosphorus SI linkers are ideal candidates for double-cargo delivery platforms because they have a higher valency than carbon. A series of substituted phosphate linkers was designed for releasing two phenolic cargos through SI followed by chemical hydrolysis. Suitable modifications of the lactate spacer increased the cargo release rate significantly, from 1 day to 2 hours or 5 minutes, as shown for linkers containing p-fluoro phenol. In turn, double cargo linkers bearing p-methyl phenol released their cargo more slowly (4 days, 4 hours, and 15 minutes) than their p-fluoro analogues. The α-hydroxyisobutyrate linker released both cargos in 25 minutes. Our study expands the current portfolio of SI constructs by providing a double cargo delivery option, which is crucial to develop universal SI platforms.  相似文献   

15.
A "self-oscillating" gel that swells and deswells periodically under constant conditions is developed as a novel biomimetic gel differing from conventional stimuli-responsive polymer gels. By utilizing the peristaltic motion of the self-oscillating gel, autonomous mass-transport systems can be realized. With the propagation of the chemical wave, the loaded gel cargo is autonomously transported by rotating on the surface. To apply the self-driven gel conveyer to a wider range of uses, it is important to investigate the influence of the physical interaction between the self-oscillating gel and the loaded cargo on its transporting ability. Here, the effect of the interaction is evaluated by using several kinds of gel cargo with varying charge states, hydrophilicities, and surface roughnesses.  相似文献   

16.
Extracellular DNA is engulfed by innate immune cells and digested by endosomal DNase II to generate an immune response. Quantitative information on endosomal stage‐specific cargo processing is a critical parameter to predict and model the innate immune response. Biochemical assays quantify endosomal processing but lack organelle‐specific information, while fluorescence microscopy has provided the latter without the former. Herein, we report a single molecule counting method based on fluorescence imaging that quantitatively maps endosomal processing of cargo DNA in innate immune cells with organelle‐specific resolution. Our studies reveal that endosomal DNA degradation occurs mainly in lysosomes and is negligible in late endosomes. This method can be used to study cargo processing in diverse endocytic pathways and measure stage‐specific activity of processing factors in endosomes.  相似文献   

17.
Researches on cargo delivery systems have received burgeoning attention and advanced rapidly. For synthetic nanodevices, polymer nanoassemblies and their inorganic‐organic hybrid materials, especially smart mesoporous silica nanoparticle (MSN)‐polymer hybrids (e. g., MSN@PGMAs), have attracted increasing attention in recent years. Their superior characteristics and unique features such as dynamic transition of morphology endow them the ability to efficiently entrap cargo molecules and undergo smart cargo delivery and release in response to various external stimuli. In this Personal Account, we present our recent research progress in the construction of cargo delivery systems based on polymers, poly(glycidyl methacrylate) (PGMA) and its derivatives in particular, ranging from polymer nanoparticles, reverse micelles, to vesicles and reverse vesicles, and their performance in the delivery and controlled release of model molecules and therapeutic agents. Significantly, MSN‐PGMA hybrid nanoassemblies (MSN@PGMAs), constructed with the aid of atom transfer radical polymerization, host‐guest interactions, or layer‐by‐layer self‐assembly techniques, and their potential bio‐related applications and anti‐bacterial applications as new nanocarriers are reviewed. Finally, the prospects and challenges of such nanoplatforms are also discussed.  相似文献   

18.
The use of endocytic uptake pathways to deliver poorly permeable molecules into mammalian cells is often plagued by entrapment and degradation of material in late endosomes and lysosomes. As a strategy to prevent the exposure of cargo to these highly hydrolytic membrane-sealed compartments, we synthesized derivatives of the membrane anchor N-alkyl-3beta-cholesterylamine that selectively target linked compounds to less hydrolytic early/recycling endosomes. By targeting a pH-dependent membrane-lytic dodecapeptide and a disulfide-linked fluorophore to these compartments in Chinese hamster ovary cells or Jurkat lymphocytes, membranes of early/recycling endosomes were selectively disrupted, resulting in cleavage of the disulfide and escape of the fluorophore into the cytosol and nucleus with low toxicity. The ability of appropriately designed N-alkyl-3beta-cholesterylamines to deliver cargo into and release disulfide-linked cargo from relatively nonhydrolytic early/recycling endosomes may be useful for the delivery of a variety of sensitive molecules into living mammalian cells.  相似文献   

19.
We demonstrate the dispersion free digital transport of emulsion droplets and biological cells in an aqueous solution using paramagnetic colloidal particles above a uniaxial magnetic garnet film. Magnetic modulations above the stripe domain pattern induce a step-wise transport of paramagnetic particles dispersed in water and deposited on the surface of the film. Capillary or hydrodynamic interactions are then used to couple the cargo to the paramagnetic beads. We achieve full control of the cargo motion up to velocities in the 100 microm/s range.  相似文献   

20.
Materials that utilize the micropatterned structure of a mesoporous silica film to successfully load and release cargo using a thermal sensitive polymer are presented in this paper. Films with pore sizes of ~2 and ~5 nm aligned in the pulling direction were synthesized using evaporation induced self-assembly techniques. The pores are exposed using a new method of stamping micropatterns without the use hydrofluoric acid. A well studied temperature dependent polymer [poly(N-isopropylacrylamide-co-acrylamide)] was grafted onto the surface of these films to act as a temperature activated gatekeeper. Below the lower critical solution temperature (LCST) the polymer is erect and can block the pore openings, trapping cargo inside the pores. When the temperature is above the LCST the polymer collapses and unblocks the pores, allowing cargo to escape. The loading capacities as well as the reusability of these films were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号