首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
A recently developed commercial rapid test kit (MIST Alert) was assessed for determination of the presence of paralytic shellfish poisoning (PSP) toxins in shellfish. Several commercially important shellfish species obtained from the UK shellfish toxin monitoring program, containing a range of total PSP toxicities as determined by the mouse bioassay (MBA), were tested. The kit detected toxin in all samples containing the European Community tolerance level of 80 microg saxitoxin (STX) equivalents/100 g shellfish flesh as determined by the MBA. With one exception, the kit detected toxin in all samples that contained >40 microg STX equivalents/100 g according to the MBA. Among samples in which the MBA did not detect toxin, the kit disagreed in 25% of the tests, although further analysis by liquid chromatography (LC) and MBA of some samples confirmed the presence of toxins. These results suggest that MIST Alert may be suitable as an initial screen for PSP toxins as part of routine monitoring programs, thereby greatly reducing the number of MBAs. Trials were also performed by nonscientific personnel to evaluate the ease of use and interpretation of results obtained by MIST Alert. The results indicated that the kits could be readily used and accurately interpreted by individuals with no technical or scientific background.  相似文献   

2.
AOAC Official Method 2005.06 LC-fluorescence detection (FLD) method is an official alternative to the mouse bioassay for the determination of paralytic shellfish poisoning (PSP) toxins in bivalve shellfish. To validate the method for species of relevance to the UK official control monitoring program, the method performance characteristics were tested for whole king and queen scallops. Validation showed that, while the performance was generally acceptable for the quantitation of non-N-hydroxylated toxins, poor toxin recovery and sensitivity was evident for the analysis of N-hydroxylated toxins following periodate oxidation. These effects occurred in a range of scallop samples with variable temporal and spatial sources. The effects were also noted in other laboratories following a small interlaboratory study. As a result, the method was refined to improve the recovery and sensitivity of analysis following the periodate oxidation step in the PSP method for scallops. Performance improved through alterations to the preparation of the periodate oxidant, use of higher volumes for C18 cleanup, and injection volumes in combination with the use of a king scallop matrix modifier for oxidation of N-hydroxylated toxin calibration standards. A single-laboratory validation of the refined method showed that the selectivity, linearity, sensitivity, recovery, and precision were acceptable and similar to values reported previously for AOAC Official Method 2005.06 in other bivalve species. Results showed the method to be rugged for all parameters investigated, including small changes to the composition of the new periodate reagent utilized in the refined method. The refined scallops LC method was subsequently compared with the European reference method. PSP-positive scallops showed an excellent agreement between the methods for queen and Atlantic scallops, with a small level of positive bias in the LC results for whole king scallops. These differences were related solely to the use of the highest toxicity equivalence factors for toxin epimeric pairs, with gonyautoxin (GTX)1,4 and GTX2,3 in particular present at high concentrations in the king scallops. Overall, the refined LC-FLD method improved the performance characteristics of AOAC Official Method 2005.06 for the determination of PSP toxins in whole king and queen scallops, and showed a good overall agreement between the official methodologies. It is, therefore, recommended as a more appropriate option for the routine monitoring of PSP toxins in these species.  相似文献   

3.
In 2009, a refined HPLC method based on AOAC Official Method 2005.06 was developed and validated for the determination of paralytic shellfish poisoning (PSP) in mussels. A single-laboratory validation study of this method was undertaken here for the analysis of PSP toxins in oysters, cockles, clams, and razor clams. The method was characterized for selectivity, sensitivity, linearity, precision, repeatability, recovery, ruggedness, and uncertainty of measurement. Validation data were utilized to determine method performance characteristics for non-mussel bivalves for all commercially available certified reference toxins, extending the method to dcNEO and dcGTX2,3, where available. A period of parallel testing of oysters, cockles, and clams enabled a comparison of sample toxicities obtained using mouse bioassay (MBA) and HPLC methodologies, although only a very low number of PSP-positive samples were obtained through the United Kingdom official control monitoring program. Results from the MBA and HPLC methods were well-correlated for PSP-negative samples, but the low number of naturally contaminated PSP-positive samples has prevented any comparative statistical assessment of method performance for non-mussels between the two official methods. However, some evidence for potentially significant differences in total saxitoxin equivalents obtained by the two methods in some species has highlighted the need for further comparative testing in non-mussel samples to be conducted prior to implementation of the HPLC method in routine official control monitoring programs.  相似文献   

4.
Sixteen laboratories participated in a collaborative study to evaluate method performance parameters of a liquid chromatographic method of analysis for paralytic shellfish toxins (PST) in blue mussels (Mytilus edulis), soft shell clams (Mya arenaria), sea scallops (Placopectin magellanicus), and American oysters (Crassostrea virginicus). The specific analogs tested included saxitoxin, neosaxitoxin, gonyautoxins-1 to -5, decarbamoyl-gonyautoxins-2 and -3, decarbamoyl-saxitoxin, and N-sulfocarbamoyl-gonyautoxin-2 and -3. This instrumental technique has been developed as a replacement for the current AOAC biological method (AOAC Official Method 959.08) and an alternative to the pre-column oxidation LC method (AOAC Official Method 2005.06). The method is based on reversed-phase liquid chromatography with post-column oxidation and fluorescence detection (excitation 330 nm and emission 390 nm). The shellfish samples used in the study were prepared from the edible tissues of clams, mussels, oysters, and scallops to contain concentrations of PST representative of low, medium, and high toxicities and with varying profiles of individual toxins. These concentrations are approximately equivalent to 1/2 maximum level (ML), ML, or 2xML established by regulatory authorities (0.40, 0.80, and 1.60 mg STX diHCl eq/kg, respectively). Recovery for the individual toxins ranged from 104 to 127%, and recovery of total toxin averaged 116%. Horwitz Ratio (HorRat) values for individual toxins in the materials included in the study were generally within the desired range of 0.3 to 2.0. For the estimation of total toxicity in the test materials, the reproducibility relative standard deviation ranged from 4.6 to 20%. A bridging study comparing the results from the study participants using the post-column oxidation (PCOX) method with the results obtained in the study director's laboratory on the same test materials using the accepted reference method, the mouse bioassay (MBA; AOAC Official Method 959.08), showed that the average ratio of results obtained from the two methods was 1.0. A good match of values was also achieved with a new certified reference material. The results from this study demonstrated that the PCOX method is a suitable method of analysis for PST in shellfish tissue and provides both an estimate of total toxicity, equivalent to that determined using the MBAAOAC Official Method 959.08, and a detailed profile of the individual toxin present in the sample.  相似文献   

5.
A collaborative study was conducted for the determination of paralytic shellfish poisoning (PSP) toxins in shellfish. The method used liquid chromatography with fluorescence detection after prechromatographic oxidation of the toxins with hydrogen peroxide and periodate. The PSP toxins studied were saxitoxin (STX), neosaxitoxin (NEO), gonyautoxins 2 and 3 (GTX2,3; together), gonyautoxins 1 and 4 (GTX1,4; together), decarbamoyl saxitoxin (dcSTX), B-1 (GTX5), C-1 and C-2 (C1,2; together), and C-3 and C-4 (C3,4; together). B-2 (GTX6) toxin was also included, but for qualitative identification only. Mussels, both blank and naturally contaminated, were mixed and homogenized to provide a variety of PSP toxin mixtures and concentration levels. The same procedure was followed with clams, oysters, and scallops. Twenty-one test samples in total were sent to 21 collaborators who agreed to participate in the study. Results were obtained from 18 laboratories representing 14 different countries. It is recommended that the method be adopted First Action by AOAC INTERNATIONAL.  相似文献   

6.
A rapid liquid chromatographic (LC) method with postcolumn oxidation and fluorescence detection (excitation 330 nm, emission 390 nm) for the determination of paralytic shellfish toxins (PSTs) in shellfish tissue has been developed. Extracts prepared for mouse bioassay (MBA) were treated with trichloroacetic acid to precipitate protein, centrifuged, and pH-adjusted for LC analysis. Saxitoxin (STX), neoSTX (NEO), decarbamoylSTX (dcSTX), and the gonyautoxins, GTX1, GTX2, GTX3, GTX4, GTX5, dcGTX2, and dcGTX3, were separated on a polar-linked alkyl reversed-phase column using a step gradient elution; the N-sulfocarbamoyl GTXs, C1, C2, C3, and C4, were determined on a C-8 reversed-phase column in the isocratic mode. Relative toxicities were used to determine STX-dihydrochloride salt (diHCl) equivalents (STXeq). Calibration graphs were linear for all toxins studied with STX showing a correlation coefficient of 0.999 and linearity between 0.18 and 5.9 ng STX-diHCI injected (equivalent to 3.9-128 microg STXeq/100 g in tissue). Detection limits for individual toxins ranged from 0.07 microg STXeq/100 g for C1 and C3 to 4.1 microg STXeq/100 g for GTX1. Spike recoveries ranged from 76 to 112% in mussel tissue. The relative standard deviation (RSD) of repeated injections of GTX and STX working standard solutions was < 4%. Uncertainty of measurement at a level of 195 microg STXeq/100 g was 9%, and within-laboratory reproducibility expressed as RSD was 4.6% using the same material. Repeatability of a 65 microg STXeq/100 g sample was 3.0% RSD. Seventy-three samples were analyzed by the new postcolumn method and both AOAC Official Methods for PST determination: the MBA (y = 1.22x + 13.99, r2 = 0.86) and the precolumn LC oxidation method of Lawrence (y = 2.06x + 12.21, r2 = 0.82).  相似文献   

7.
Paralytic shellfish poisoning (PSP) toxins are produced by certain marine dinoflagellates and may accumulate in bivalve molluscs through filter feeding. The Mouse Bioassay (MBA) is the internationally recognised reference method of analysis, but it is prone to technical difficulties and regarded with increasing disapproval due to ethical reasons. As such, alternative methods are required. A rapid surface plasmon resonance (SPR) biosensor inhibition assay was developed to detect PSP toxins in shellfish by employing a saxitoxin polyclonal antibody (R895). Using an assay developed for and validated on the Biacore Q biosensor system, this project focused on transferring the assay to a high-throughput, Biacore T100 biosensor in another laboratory. This was achieved using a prototype PSP toxin kit and recommended assay parameters based on the Biacore Q method. A monoclonal antibody (GT13A) was also assessed. Even though these two instruments are based on SPR principles, they vary widely in their mode of operation including differences in the integrated μ-fluidic cartridges, autosampler system, and sensor chip compatibilities. Shellfish samples (n = 60), extracted using a simple, rapid procedure, were analysed using each platform, and results were compared to AOAC high performance liquid chromatography (HPLC) and MBA methods. The overall agreement, based on statistical 2 × 2 comparison tables, between each method ranged from 85% to 94.4% using R895 and 77.8% to 100% using GT13A. The results demonstrated that the antibody based assays with high sensitivity and broad specificity to PSP toxins can be applied to different biosensor platforms.  相似文献   

8.
An interlaboratory study was conducted for the determination of paralytic shellfish poisoning (PSP) toxins in shellfish. The method used liquid chromatography with fluorescence detection after prechromatographic oxidation of the toxins with hydrogen peroxide and periodate. The PSP toxins studied were saxitoxin (STX), neosaxitoxin (NEO), gonyautoxins 2 and 3 (GTX2,3 together), gonyautoxins 1 and 4 (GTX1,4 together), decarbamoyl saxitoxin (dcSTX), B-1 (GTX5), C-1 and C-2 (C1,2 together), and C-3 and C-4 (C3,4 together). B-2 (GTX6) toxin was also included, but for qualitative identification only. Samples of mussels, both blank and naturally contaminated, were mixed and homogenized to provide a variety of PSP toxin mixtures and concentration levels. The same procedure was followed with samples of clams, oysters, and scallops. Twenty-one samples in total were sent to 21 collaborators who agreed to participate in the study. Results were obtained from 18 laboratories representing 14 different countries.  相似文献   

9.
Tetrodotoxin (TTX) is a potent neurotoxin emerging in European waters due to increasing ocean temperatures. Its detection in seafood is currently performed as a consequence of using the Association of Analytical Communities (AOAC) mouse bioassay (MBA) for paralytic shellfish poisoning (PSP) toxins, but TTX is not monitored routinely in Europe. Due to ethical and performance-related issues associated with this bioassay, the European Commission has recently published directives extending procedures that may be used for official PSP control. An AOAC-accredited high-performance liquid chromatography (HPLC) method has now been accepted by the European Union as a first action screening method for PSP toxins to replace the MBA. However, this AOAC HPLC method is not capable of detecting TTX, so this potent toxin would be undetected; thereby, a separate method of analysis is required. Surface plasmon resonance (SPR) optical biosensor technology has been proven as a potential alternative screening method to detect PSP toxins in seafood. The addition of a similar SPR inhibition assay for TTX would complement the PSP assay in removing the MBA. The present report describes the development and single laboratory validation in accordance with AOAC and IUPAC guidelines of an SPR method to be used as a rapid screening tool to detect TTX in the sea snail Charonia lampas lampas, a species which has been implicated in 2008 in the first case of human TTX poisoning in Europe. As no current regulatory limits are set for TTX in Europe, single laboratory validation was undertaken using those for PSP toxins at 800 μg/kg. The decision limit (CCα) was 100 μg/kg, with the detection capability (CCβ) found to be ≤200 μg/kg. Repeatability and reproducibility were assessed at 200, 400, and 800 μg/kg and showed relative standard deviations of 8.3, 3.8, and 5.4 % and 7.8, 8.3, and 3.7 % for both parameters at each level, respectively. At these three respective levels, the recovery of the assay was 112, 98, and 99 %.  相似文献   

10.
The prechromatographic oxidation LC method developed by Lawrence [J. Assoc. Off. Anal. Chem. 74, 404-409(1991)] for the determination of paralytic shellfish poisoning (PSP) toxins has been tested for the quantitative determination of PSP toxins in shellfish. All aspects of the method were studied and modified as necessary to improve its performance for routine regulatory purposes. The chromatographic conditions were changed to shorten analysis time. The oxidation reaction was tested for repeatability and the influence of the sample matrix on quantitation. An important part of the study was to quantitatively evaluate an ion exchange (-COOH) cleanup step using disposable solid-phase extraction cartridges that separated the PSP toxins into 3 distinct groups for quantitation, namely the C toxins, the GTX toxins, and the saxitoxin group. The cleanup step was very simple and used increasing concentrations of aqueous NaCl for elution of the toxins. The C toxins were not retained by the cartridges and thus were eluted unretained with water. The GTX toxins (GTX1 to GTX6 as well as dcGTX2 and dcGTX3) eluted from the cartridges with 0.05M NaCl while the saxitoxin group (saxitoxin, neosaxitoxin, and dcsaxitoxin) required 0.3M NaCl for elution. Each fraction was analyzed by LC after oxidation with periodate or peroxide. All of the compounds could be separated and quantitatively determined in spiked samples of mussels, clams, and oysters. The nonhydroxylated toxins could be quantitated at concentrations as low as about 0.02 microg/g (2 micro/100 g) of tissue while the hydroxylated toxins could be quantitated at concentrations as low as about 0.1 microg/g (10 microg/100 g). Average recoveries of the toxins through the complete cleanup procedure were 85% or greater for spiked extracts of oysters and clams and greater than 73% for mussels.  相似文献   

11.
An HPLC-FLD method, involving pre-chromatographic oxidation of the PSP toxins with hydrogen peroxide and periodate, has been AOAC validated through a collaborative trial and adopted as AOAC Official Method. This method could be a candidate for replacing the mouse bioassay (MBA) for the Official Control of PSP toxins at European level, once accepted by the legislation. An interlaboratory exercise has been organized by the CRLMB to evaluate its "fitness for purpose" for the Official Control of PSP toxins in the EU laboratories. Eighteen EU laboratories took part in the study and had to analyze six bivalve mollusc samples with several PSP toxic profiles. The performance of the participant laboratories in the application of this method was compared with that obtained at the collaborative trial. Information on problems/drawbacks encountered by participants in the application of this method was also sought. The HPLC validated method is only applicable for Official PSP Control for certain samples. This depends on sample PSP toxic profile. Results obtained for samples where only GTX2,3 and STX were present were satisfactory and in agreement with MBA results. Results obtained for a sample with a toxic profile dominated by GTX6 and suspected to contain also C1,2 and C3,4 were not satisfactory. GTX5 and dc-STX could be quantified, although the results achieved (total toxicity) were lower than those obtained by MBA. It can be also useful as a screening method, complementary to MBA, helping in the reduction of the animals used. However, the lack of several PSP standards, the fact that the method is not validated for all the PSP toxins, and several drawbacks found in its application are a handicap to fully implement it for Official PSP Control as a viable replacement for bioassay.  相似文献   

12.
At present, the analytical method for paralytic shellfish poisoning (PSP) toxins in shellfish is the mouse bioassay (MBA), which is an official method of the Association of Analytical Communities (AOAC [8]). However, the low sensitivity and concerns over the number of live animals required for testing have been cited as the major reason for seeking its replacement. In this report, we employed an open-sandwich immunoassay (OS-IA) to detect gonyautoxin (GTX2/3), a kind of PSP toxins. OS-IA, which utilizes the antigen-induced enhancement of antibody VH/VL interaction, can measure a small molecule antigen in a noncompetitive format. Hence it has a wider working range and shorter measurement time. We isolated anti-GTX2/3 antibody gene from a hybridoma GT-13A by screening a Fab-displaying phage library. Then the vectors for OS-IA were constructed, and examined for antigen concentration-dependency of the VH/VL interaction by OS-ELISA. As a result, in each case, signal intensity increases notably in a wide concentration range (0.1 to >1000 ng mL−1) of free GTX2/3, which was enough to cover its regulation value (80 μg 100 g−1) in many countries. So OS-IA will be widely applicable to detect PSP toxins in shellfish meats and in drinking water.  相似文献   

13.
A rapid multiple toxin method based on liquid chromatography with mass spectrometry (LC/MS) was developed for the detection of okadaic acid (OA), dinophysistoxin-1 (DTX-1), DTX-2, yessotoxin (YTX), homoYTX, 45-hydroxy-YTX, 45-hydroxyhomo-YTX, pectenotoxin-1 (PTX-1), PTX-2, azaspiracid-1 (AZA-1), AZA-2, and AZA-3. Toxins were extracted from shellfish using methanol-water (80%, v/v) and were analyzed using a C8 reversed-phase column with a 5 mM ammonium acetate-acetonitrile mobile phase under gradient conditions. The method was validated for the quantitative detection of OA, YTX, PTX-2, and AZA-1 in 4 species (mussels, Mytilus edulis; cockles, Cerastoderma edule; oysters, Crassostrea gigas; king scallop, Pecten maximus) of shellfish obtained from United Kingdom (UK) waters. Matrix interferences in the determination of the toxins in these species were investigated. The validated linear range of the method was 13-250 microg/kg for OA, PTX-2, and AZA-1 and 100-400 microg/kg for YTX. Recovery and precision ranged between 72-120 and 1-22%, respectively, over a fortification range of 40-160 microg/kg for OA, PTX-2, and AZA-1 and 100-400 microg/kg for YTX. The limit of detection, reproducibility, and repeatability of analysis showed acceptable performance characteristics. A further LC/MS method using an alkaline hydrolysis step was assessed for the detection of OA, DTX-1, and DTX-2 in their esterified forms. In combination with the LC/MS multiple toxin method, this allows detection of all toxin groups described in Commission Decision 2002/225/EC.  相似文献   

14.
An efficient LC method has been developed for the determination of paralytic shellfish poisoning (PSP) toxins based on ion-exchange chromatographic separation of the toxins followed by electrochemical post-column oxidation and fluorescence detection as well as mass spectrometric (MS) detection. The method can be applied to the determination of PSP toxins in phytoplankton and to control seafood for PSP content.  相似文献   

15.
During 1998 and early 1999, shellfish samples from sites in Scotland were found to contain the amnesic shellfish poisoning toxin, domoic acid (DA). Two different techniques, liquid chromatography (LC) with UV diode-array detection and LC with mass spectrometric (MS) detection, were used to detect and confirm DA in shellfish extracts. The LC/UV method was validated for routine monitoring by recovery experiments on spiked mussel and scallop tissues with a certified mussel tissue used as reference material. Crude extracts of selected samples as well as extracts cleaned with strong anion exchange (SAX) were analyzed by both LC/UV and LC/MS. Good correlation (linear regression r2 = 0.996, slope = 0.93) between the 2 methods was found for cleaned extracts. Analyses of crude extracts by LC/UV produced false-positive results in 2 crab samples, whereas LC/MS analyses gave accurate results. It was concluded that LC/UV is a valid approach for routine monitoring of DA in shellfish when cleanup is performed with a SAX cartridge to prevent false positives. A variety of shellfish species were surveyed for DA content, including Pecten maximus (king scallops), Chlamys opercularis (queen scallop), Mytilus edulis (blue mussels), Cancer pugaris (crab), and Ensis ensis (razor fish). The highest concentration of DA was 105 microg/g in Pecten maximus.  相似文献   

16.
Ionspray mass spectrometry has been used to monitor the purification of saxitoxin, the parent compound in the family of toxins responsible for paralytic shellfish poisoning (PSP), from a strain of the dinoflagellate Alexandrium excavatum. Quantitative results obtained by flow-injection analysis are compared to those obtained by high-performance liquid chromatography with post-column oxidation and fluorescence detection. The coupling of liquid chromatography and capillary electrophoresis with ionspray mass spectrometry is described for the separation of mixtures of PSP toxins and the highly potent pufferfish toxin tetrodotoxin. Tandem mass spectrometry is used to provide the structural information, and the ability to distinguish isomeric PSP toxins both chromatographically and mass spectrometrically is demonstrated.  相似文献   

17.
香港海域毒性微藻Alexandium tamarense的麻痹性贝毒研究   总被引:2,自引:0,他引:2  
对从香港海域底坭分离并培养的毒性微藻塔玛亚历山大藻(Alexandiumtamareuse)的毒性和麻痹性贝毒素的组成进行研究。由生物试验测得其毒性为4.11×10-6MU/cell,用高效液相色谱分析毒素的组成,结果表明所含麻痹性贝毒成分主要是膝沟藻毒素-2(GTX2),含量为94.13pg/cell,本研究所用的微藻毒素提取方法和高效液相色谱分析方法都比较容易和有效。  相似文献   

18.
Summary Domoic acid, the shellfish toxin discovered in 1987 off the eastern coast of Canada and northern US is determined by isocratic reversed-phase LC with UV detection at 242 nm. Extraction from shellfish tissue is achieved with 0.1 mol/l HCl or water, with minimal cleanup before LC analysis. Detection limits are around 0.5 g/g. Results can be confirmed by pre-chromatographic derivatization at either the — NH or — COOH moiety. An LC screening method using pre-chromatographic oxidation has been developed for paralytic shellfish poison (PSP, comprised mainly of 12 related compounds). The individual toxins in the PSP family produced single products with periodate oxidation. However, they could not all be separated using a variety of chromatography systems including reversed-phase and ion-pair chromatography with heptane sulfonate or tetrabythyl-ammonium ion. Detection limits were about 0.05 g/g total PSP toxin in shellfish. Saxitoxin could be detected at 5–10 pg per injection. Comparisons of this method with the mouse bioassay and the post-column technique showed reasonable agreement between results.  相似文献   

19.
Analysis of paralytic shellfish poisons by capillary electrophoresis   总被引:3,自引:0,他引:3  
A capillary electrophoresis (CE) method with UV detection is described for the separation and determination of underivatized toxins associated with paralytic shellfish poisoning (PSP). Confirmation of the electrophoretic peaks was facilitated by mass spectrometric (MS) detection using an ionspray CE-MS interface and by high-performance liquid chromatography with fluorescence detection. The determination of PSP toxins, such as saxitoxin and neosaxitoxin, in toxic dinoflagellates and scallops is demonstrated and comparisons are made with existing techniques.  相似文献   

20.
Despite ethical and technical concerns, the in vivo method, or more commonly referred to mouse bioassay (MBA), is employed globally as a reference method for phycotoxin analysis in shellfish. This is particularly the case for paralytic shellfish poisoning (PSP) and emerging toxin monitoring. A high-performance liquid chromatography method (HPLC-FLD) has been developed for PSP toxin analysis, but due to difficulties and limitations in the method, this procedure has not been fully implemented as a replacement. Detection of the diarrhetic shellfish poisoning (DSP) toxins has moved towards LC-mass spectrometry (MS) analysis, whereas the analysis of the amnesic shellfish poisoning (ASP) toxin domoic acid is performed by HPLC. Although alternative methods of detection to the MBA have been described, each procedure is specific for a particular toxin and its analogues, with each group of toxins requiring separate analysis utilising different extraction procedures and analytical equipment. In addition, consideration towards the detection of unregulated and emerging toxins on the replacement of the MBA must be given. The ideal scenario for the monitoring of phycotoxins in shellfish and seafood would be to evolve to multiple toxin detection on a single bioanalytical sensing platform, i.e. ‘an artificial mouse’. Immunologically based techniques and in particular surface plasmon resonance technology have been shown as a highly promising bioanalytical tool offering rapid, real-time detection requiring minimal quantities of toxin standards. A Biacore Q and a prototype multiplex SPR biosensor have been evaluated for their ability to be fit for purpose for the simultaneous detection of key regulated phycotoxin groups and the emerging toxin palytoxin. Deemed more applicable due to the separate flow channels, the prototype performance for domoic acid, okadaic acid, saxitoxin, and palytoxin calibration curves in shellfish achieved detection limits (IC20) of 4,000, 36, 144 and 46 μg/kg of mussel, respectively. A one-step extraction procedure demonstrated recoveries greater than 80 % for all toxins. For validation of the method at the 95 % confidence limit, the decision limits (CCα) determined from an extracted matrix curve were calculated to be 450, 36 and 24 μg/kg, and the detection capability (CCβ) as a screening method is ≤10 mg/kg, ≤160 μg/kg and ≤400 μg/kg for domoic acid, okadaic acid and saxitoxin, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号