首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Specific heat data below 1 K of Bi2Sr2CaCu2O8 and YBa2Cu3O7 are analyzed. For YBa2Cu3O7 the nuclear specific heat, CN, amounts to 38T−2 μJ/mol K. CN for Bi2Sr2CaCu2O8 exceeds that of YBa2Cu3O7 by a factor of 15. The nuclear quadrupolar specific heat contribution alone is insufficient to explain the data for YBa2Cu3O7, while lack of NQR data does not allow such a comparison in Bi2Sr2CaCu2O8 to be made. The contribution to CN from nuclear spins coupled via the contact hyperfine interaction with correlated magnetic spins (in the CuO2 plane) is derived as a function of the correlation length. This contribution can be treated independently from the quadrupolar term. We show that the excess specific heat in YBa2Cu3O7 likely originates in a few percentage of an impurity (oxygen deficient) phase with a strong hyperfine field on the Cu nuclei.  相似文献   

2.
Ellipsometry was used to study (110) and (001) oriented films of YBa2Cu3O7 and PrBa2Cu3O7 in the mid-and near-infrared spectral regions. Below a photon energy of 0.1 eV, the in-plane component of the dielectric tensor of YBa2Cu3O7 is dominated by a Drude term with a squared plasma energy of (3.0 ± 0.3) eV2. This “oscillator strength”, and the Lorentzian broadening energy of (0.104 ± 0.005) eV at room temperature, are confirmed by the changes induced in Pr-substituted material, and by low-temperature measurements in the near-infrared. The deviation from the Drude behavior observed above 0.1 eV is accounted for by a broad absorption band with an oscillator strength of (3.6 ± 0.1) eV2 in YBa2Cu3O7 which shifts to higher energies and takes over almost all of the oscillator strength of the Drude term when Y is substituted by Pr. The response to electric fields perpendicular to the planes is much weaker, with an upper bound of 0.63 eV2 for the squared plasma energy. The in-plane loss function computed from the measured dielectric function follows the Drude-like lineshape, modified by the bound-state absorption band, down to the lowest energy reached in our measurements (0.058 eV).  相似文献   

3.
Results of field electron emission spectroscopic investigations of YBa2Cu3O6.9 single crystal specimens oriented perpendicular to the c-axis are presented. It is shown that the shift of the total energy distribution of field-emitted electrons from YBa2Cu3O6.9 along the energy scale with increasing electric-field strength at the surface of the specimen is due to the penetration of the electric field into the subsurface region of the YBa2Cu3O6.9 specimen. The electron concentration in YBa2Cu3O6.9 found from spectroscopic measurements is n=(2−4) × 1021 cm−3. Field electron emission spectroscopy and microscopy of YBa2Cu3O6.9 allows one to draw the conclusion that the electron concentration in the bulk of the material does not change with cooling of specimens from 300 K to 115 K.  相似文献   

4.
All-thin-film ramp type Josephson junctions between YBa2Cu3O7−δ and Nb have been fabricated. This procedure allows connections between high-Tc and low-Tc superconductors at different crystal sides of the high-Tc superconductor on one chip, which is of great interest for novel phase devices. A thin Au layer is incorporated as a chemical barrier to avoid oxygen transfer from the YBa2Cu3O7−δ to the Nb. Critical current densities up to 600 A/cm2 are obtained at T=4.2 K, with typical RnA values of 0.8 μΩ cm2. The variation of the magnetic field dependence of the critical current with the angle between the junction barrier and the YBa2Cu3O7−δ crystal axes is explained by considering a predominant dx2y2 order parameter symmetry of the YBa2Cu3O7−δ. The successful fabrication of these junctions allows the implementation of novel superconducting electronics, such as complementary Josephson circuitry or proposed qubit concepts, using the unconventional order parameter symmetry of the high-Tc superconductor.  相似文献   

5.
Samples of YBa2Cu4O8 are prepared by means of a new high oxygen pressure technique employing oxygen-HIP. Both magnetization and resistivity measurements show the superconductivity transition at 82.5 K. The lower and upper critical fields of YBa2Cu4O8 are obtained from the magnetization measurements. The Ginzburg-Landau parameters, ζ(0)=17 Å, λ(0)=2400 Å, are estimated from these results.  相似文献   

6.
Ca-doped YBa2Cu4O8 (124) thin films are prepared on (100) SrTiO3 substrates by annealing the amorphous films deposited using a pulsed laser deposition technique. The X-ray diffraction measurements show that the Ca-doped YBa2Cu4O8 phase is formed by annealing below 800°C at a oxygen pressure of 1 atm. The 124 films have c-axis orientation normal to the substrates. As the Ca content increases, the proportion of the 123 impurity phase in the samples increases. The onset temperature of superconductivity of the Y(Ca)Ba2Cu4O8 films increases from 79 K to 88 K with an increase Ca-substitution for 5 to 10% of Y.  相似文献   

7.
The P-T-x phase diagram of the pseudobinary system (Y-Ba-Cu-O)-O2 has been further investigated in the oxygen pressure range between 1 and 3000 bar. The stability ranges of the phases YBa2Cu4O8 (124), YBa2Cu3.5O7.5−x (123.5) and YBa2Cu3O7−x (123) have been determined. Long duration experiments showed that the 123 phase is not stable at least down to 7 bar≤P≤20 bar oxygen and 900°C. It is not clear whether at lower pressures and temperatures the 123 phase is thermodynamically stable or metastable due to low reaction rates. In the presence of excess CuO, the 124 is the stable phase. The melting of 124 pellets at PO2=2800 bar shows that even at this pressure the 124 compound melts incongruently. Using the phase diagram data we could change the Tc of 123.5 from 16 to 70 K by varying systematically the nonstoichiometry. Due to a narrow homogeneity range the Tc of 124 remained constant but is different for powder pellets (81 K) and for crystals (70 K), probably due to the influence of the flux. Single crystals of both 124 and 123.5 with dimensions up to 4 mm were grown from the flux under high oxygen pressure.  相似文献   

8.
The crystal structure of YBa2Cu3O7−x thin films has been investigated by cross-section transmission electron microscopy. The samples were deposited on MgO (100) substrates at 670°C with substrate bias voltages of ±300 V. For the unbiased case, c-axis, a-axis and (103) oriented domains normal to the substrate surface were observed. In this film, the c-axis oriented domains are dominant, but the crystal often exhibits a longer c-lattice constant than that of the YBa2Cu3O7−x system, so extra cationic layers are inserted in the YBa2Cu3O7−x intrinsic stacking sequence. For the case of −300 V, rotated domains were dominant in the entire film; however, c-axis oriented domains also grow from the substrate surface. Small-angle semicoherent grain boundaries between them were observed. In the case of +300 V, all the grains show c-axis oriented YBa2Cu3O7−x. The degree of preferential orientation of the grains is reduced at negative bias voltage of −300 V and the structure defects are reduced by applying a positive bias of +300 V.  相似文献   

9.
63Cu, 17O and 205Tl NMR have been performed in the high-Tc superconductor Tl2Ba2Ca2Cu3O10 whose Tc(max) is 127 K. The hole densities at Cu and oxygen sites in the CuO2 plane have been extracted from the nuclear quadrupole frequency νQ. The striking feature is that the Cu holes are significantly transferred to oxygen site due to strong hybridization between Cu and oxygen. From an analysis of T1 and T2G, it has been found that the spectral weight of the spin fluctuation is transferred to higher energy compared to YBa2Cu3O7, while the magnetic correlation length ξ does not differ much. Thus, it is suggested that the higher Tc is due to higher characteristic energy of spin fluctuations, i.e. the superconductivity is spin fluctuation mediated. The superconducting properties are consistently explained by a d-wave superconductivity model with a finite density of states (DOS) at the Fermi level. We show that the disorder of the Ca/TlO layer caused by the partial inter-substitution of Tl and Ca is responsible for the potential scattering to produce such a DOS. It is found that if such a potential scattering were absent, Tc would go up to 132 K which is quite close to the record Tc realized in the Hg based compound.  相似文献   

10.
We have studied the stationary Josephson effect on YBa2Cu3O7−δ (Tc=90 K) and Bi2Sr2Ca1Cu2 O8 (Tc=80 K and 87 K for two samples of different origin) ceramic based junctions. The temperature dependence of the critical current near Tc has been found as Ic≈(Tc-T) for the Y-Ba-Cu-O samples indicating that they should be classified as S-N-I-N-S type junctions. The I-V curves of the Bi-Sr-Ca-Cu samples show the typical behaviour of S-I-S structures. Using Ambegaokar-Baratoff's theory for Bi2Sr2Ca1Cu2O8, the temperature dependence of the superconducting state gap Δ(T) was calculated and it was evaluated that 1.452Δ(0)/kBTc3.5.  相似文献   

11.
Since the discovery of high-temperature cuprate superconductors, there has been much intensive study about the mechanism of them. However, identifying the dynamical mechanism behind them remains one of the great challenges in condensed matter physics. We investigated the high-temperature YBa2Cu3O7−x superconducting films by using a free electron laser (FEL). The method is a type of photoelectron spectroscopy called a free electron laser internal photoemission. The spectrum of the photocurrent induced by FEL was measured in the case of 15 K and 100 K. We estimated the superconductive gap energy of YBa2Cu3O7−x by comparing the photocurrent spectrum of the superconductive state with that of non-superconductive state.  相似文献   

12.
The phase equilibria around YBa2Cu3O7−x (123) and YBa2Cu4O8 (124) phases at low oxygen partial pressure (1 atm) were investigated by X-ray diffraction and thermal analysis. The coexistence of 123 and 124 phase was confirmed under 1 atm oxygen pressure. By using the high temperature X-ray diffraction method, the univariant reaction YBa2Cu3O7−x+Cu2OY2BaCu2O2+O2 was identified. The oxygen partial pressure dependence of several univariant reactions has been investigated and the existence of two invariant reactions of L+O2YBa2Cu3O7−x+ BaCuO2+CuO+Cu2O and L+Y2BaCuO5+O2YBa2Cu3O7−x+CuO+Cu2O was deduced to occur at 1103 K under 0.0032 atm O2 and at 1143 K under 0.0085 atm O2, respectively.  相似文献   

13.
The heteroepitaxy in DyMnO3/Er1Ba2Cu3O7-δ bilayer thin films on LaAlO3 (100) substates was characterized by four-circle X-ray diffractometry. The Er1Ba2Cu3O7-δ thin films on LaAlO3 (100) substrates were prepared by molecular-beam deposition (MBD) and post-growth annealing in wet and dry O2 at 880°C, whereas the DyMnO3 thin films on the Er1Ba2Cu3O7-δ/LaAlO3 (100) heterostructure were deposited by MBD and post-growth annealing in dry O2 at 750°C. The conventional X-ray diffraction (XRD) patterns as well as pole figures (φ-scans) for specific (hkl) reflections were acquired. The Er1Ba2Cu3O7-δ thin film in the DyMnO3/Er1Ba2Cu3O7-δ/LaAlO3 (100) heterostructure showed [001] oriented epitaxial growth, as expected. The DyMnO3 thin film on the Er1Ba2Cu3O7-δ epilayer in the heterostructure grew with (110) epitaxy in its metastable orthorhombic phase (lattice constants: ao=5.272 Å, bo=5.795 Å and co=7.38 Å). The heteroepitaxial relationships at the orthorhombic-DyMnO O3 (110) /Er1Ba2Cu3O7-δ (001) interface was determined as the following: DyMnO3 (110) Er1Ba2Cu3O7-δ (001), DyMnO3 [1 0] ¶r; Er1Ba2Cu3O7-δ[100] or Er1Ba2Cu3O7-δ[010], and DyMnO3 [001] ¶r; Er1Ba2Cu3O 7-δ[010] or Er1Ba2Cu3O7-δ [100].  相似文献   

14.
Tin and its oxides have been introduced into the intergrain areas of polycrystalline YBa2Cu3O7−δ by coating the crystalline grains with a thin layer of tin and sintering the ceramics in flowing oxygen and argon. The transport critical current density Jc at 77 K in a magnetic field of 0−1.5 T is enhanced as a result of the coating. A probable improvement of the intergrain weak links is suggested.  相似文献   

15.
Flux distributions of partial-melting processed Bi2Sr2CaCu2O8+δ ceramics are obtained using magneto-optic imaging. In remanent states (μ0Ha=0 T), large amounts of trapped flux are observed along (Sr,Ca)2CuOy particles embedded in the Bi2Sr2CaCu2O8+δ matrix. Despite the relatively large size of these particles (up to 30 μm), the pinning effect is similar to that of Y2BaCuO5 particles in melt-processed YBa2Cu3O7−δ. Furthermore, we discuss how the pinning capability of non-superconducting particles of different sizes and densities will show up in magneto-optic images.  相似文献   

16.
The magnetic field dependence of ultrasound velocity in YBa2Cu3O7 single crystal is studied. Below Tc ultrasonic dispersion and attenuation are found to be sensitive to the dynamics of the flux-line lattice. The experimental results are compared to the theoretical predictions.  相似文献   

17.
The modulated microwave absorption in YBa2Cu3O7−δ thin films was studied as a function of temperature, modulation amplitude, and microwave power. The comparative nature of weak links in YBaCuO thin films, ceramics, and powders is discussed.  相似文献   

18.
用穆斯堡尔效应研究YBa2Cu3O7-δ中的磁有序   总被引:1,自引:0,他引:1       下载免费PDF全文
57Fe作为探针,用穆斯堡尔效应研究YBa2Cu3O7-δ的磁有序与超导电性的关系。实验结果可以用非声子超导机制进行定性解释。 关键词:  相似文献   

19.
A comparative angle-resolved photoemission measurement has been performed on nonsuperconductive Bi2Sr2Ca0.4Y0.6Cu2O8 and superconductive Bi2Sr2CaCu2O8 to study the nature and origin of the electronic states near the Fermi level. It was found that hole-doping does not cause a rigid shift of the density of states relative to the Fermi level, but creates new electronic states in the vicinity of the Fermi level.  相似文献   

20.
The equilibrium oxygen content as a function of the temperature and oxygen pressure was measured for the solid solution YBa2Cu3−xCoxO6+δ, where x=0, 0.2, 0.4, 0.6, 0.8, by using coulometric titration in the temperature range 600–850°C and oxygen pressures between 10−5 and 1.0 atm. The change in the partial molar enthalpy and entropy of the intercalated oxygen was determined at different oxygen and cobalt contents. The oxygen chemical diffusion was studied by thermogravimetric relaxation in the oxygen-controlled atmosphere. The thermodynamic data were employed to determine how the chemical diffusion coefficient, the thermodynamic factor and the random-diffusion coefficient depend on oxygen content in specimens with different cobalt concentration. The oxygen intercalation thermodynamics and diffusivity results provide evidence of ordering phenomena on a microscopic scale in the basal plane of the tetragonal solid solution YBa2Cu3−xCoxO6+δ. A model for the oxygen diffusion is suggested to explain the large difference between the random and tracer diffusion coefficients in YBa2Cu3O6+δ  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号