首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

When nanoparticles (NPs) enter a biological environment, medium components, especially proteins, compete for binding to the NP’s surface, leading to development of a new interface, commonly referred to as the “protein corona.” This rich protein shell gives the NPs a biological identity that can be very different from their synthetic one, in terms of their chemical–physical properties. Understanding NP–protein interaction is crucial for both the bioapplications and safety of nanomaterials. The protein corona provides the primary contact to the cells and their receptors. It defines in vivo fate of the delivery systems, governing the stability, immunogenicity, circulation, clearance rates and organ biodistribution of the NPs. Given its importance, the application and the development of analytical methods to investigate the protein corona are crucial. This review gives an overview of chromatographic, electrophoretic, mass spectrometric and proteomic methods because these techniques have the advantage to be able to identify and quantify individual proteins adsorbed onto the corona. This capability opens up the possibility to exploit the protein corona for specific cell targeting.

  相似文献   

2.
When nanoparticles (NPs) enter a biological environment, medium components, especially proteins, compete for binding to the NP’s surface, leading to development of a new interface, commonly referred to as the “protein corona.” This rich protein shell gives the NPs a biological identity that can be very different from their synthetic one, in terms of their chemical–physical properties. Understanding NP–protein interaction is crucial for both the bioapplications and safety of nanomaterials. The protein corona provides the primary contact to the cells and their receptors. It defines in vivo fate of the delivery systems, governing the stability, immunogenicity, circulation, clearance rates and organ biodistribution of the NPs. Given its importance, the application and the development of analytical methods to investigate the protein corona are crucial. This review gives an overview of chromatographic, electrophoretic, mass spectrometric and proteomic methods because these techniques have the advantage to be able to identify and quantify individual proteins adsorbed onto the corona. This capability opens up the possibility to exploit the protein corona for specific cell targeting.  相似文献   

3.
When nanoparticles enter biological environments, proteins adsorb to form the “protein corona” which alters nanoparticle biodistribution and toxicity. Herein, we measure protein corona formation on DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs), a nanoparticle used widely for sensing and delivery, in blood plasma and cerebrospinal fluid. We characterize corona composition by mass spectrometry, revealing high-abundance corona proteins involved in lipid binding, complement activation, and coagulation. We investigate roles of electrostatic and entropic interactions driving selective corona formation. Lastly, we study real-time protein binding on ssDNA-SWCNTs, obtaining agreement between enriched proteins binding strongly and depleted proteins binding marginally, while highlighting cooperative adsorption mechanisms. Knowledge of protein corona composition, formation mechanisms, and dynamics informs nanoparticle translation from in vitro design to in vivo application.  相似文献   

4.
It is now clearly emerging that besides size and shape, the other primary defining element of nanoscale objects in biological media is their long-lived protein ("hard") corona. This corona may be expressed as a durable, stabilizing coating of the bare surface of nanoparticle (NP) monomers, or it may be reflected in different subpopulations of particle assemblies, each presenting a durable protein coating. Using the approach and concepts of physical chemistry, we relate studies on the composition of the protein corona at different plasma concentrations with structural data on the complexes both in situ and free from excess plasma. This enables a high degree of confidence in the meaning of the hard protein corona in a biological context. Here, we present the protein adsorption for two compositionally different NPs, namely sulfonated polystyrene and silica NPs. NP-protein complexes are characterized by differential centrifugal sedimentation, dynamic light scattering, and zeta-potential both in situ and once isolated from plasma as a function of the protein/NP surface area ratio. We then introduce a semiquantitative determination of their hard corona composition using one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray liquid chromatography mass spectrometry, which allows us to follow the total binding isotherms for the particles, identifying simultaneously the nature and amount of the most relevant proteins as a function of the plasma concentration. We find that the hard corona can evolve quite significantly as one passes from protein concentrations appropriate to in vitro cell studies to those present in in vivo studies, which has deep implications for in vitro-in vivo extrapolations and will require some consideration in the future.  相似文献   

5.
The key challenge in the field of fluorescent nanoparticles (NPs) for biological applications is to achieve superior brightness for sizes equivalent to single proteins (3–7 nm). We propose a concept of shell‐cross‐linked fluorescent micelles, in which PEGylated cyanine 3 and 5 bis‐azides form a covalently attached corona on micelles of amphiphilic calixarene bearing four alkyne groups. The fluorescence quantum yield of the obtained monodisperse NPs, with a size of 7 nm, is a function of viscosity and reached up to 15 % in glycerol. In the on‐state they are circa 2‐fold brighter than quantum dots (QD‐585), which makes them the smallest PEGylated organic NPs of this high brightness. FRET between cyanine 3 and 5 cross‐linkers at the surface of NPs suggests their integrity in physiological media, organic solvents, and living cells, in which the NPs rapidly internalize, showing excellent imaging contrast. Calixarene micelles with a cyanine corona constitute a new platform for the development of protein‐sized ultrabright fluorescent NPs.  相似文献   

6.
Peptides and proteins are exposed to a variety of interfaces in a physiological environment, such as cell membranes, protein nanoparticles (NPs), or viruses. These interfaces have a significant impact on the interaction, self-assembly, and aggregation mechanisms of biomolecular systems. Peptide self-assembly, particularly amyloid fibril formation, is associated with a wide range of functions; however, there is a link with neurodegenerative diseases, such as Alzheimer's disease. This review highlights how interfaces affect peptide structure and the kinetics of aggregation leading to fibril formation. In nature, many surfaces are nanostructures, such as liposomes, viruses, or synthetic NPs. Once exposed to a biological medium, nanostructures are coated with a corona, which then determines their activity. Both accelerating and inhibiting effects on peptide self-assembly have been observed. When amyloid peptides adsorb to a surface, they typically concentrate locally, which promotes aggregation into insoluble fibrils. Starting from a combined experimental and theoretical approach, models that allow for a better understanding of peptide self-assembly near hard and soft matter interfaces are introduced and reviewed. Research results from recent years are presented and relationships between biological interfaces, such as membranes and viruses, and amyloid fibril formation are proposed.  相似文献   

7.
When nanoparticles (NPs) are introduced to a biological fluid, different proteins (and other biomolecules) rapidly get adsorbed onto their surface, forming a protein corona capable of giving to the NPs a new “identity” and determine their biological fate. Protein–nanoparticle conjugation can be used in order to promote specific interactions between living systems and nanocarriers. Non‐covalent conjugates are less stable and more susceptible to desorption in biological media, which makes the development of engineered nanoparticle surfaces by covalent attachment an interesting topic. In this work, the surface of poly(globalide‐co‐ε‐caprolactone) (PGlCL) nanoparticles containing double bonds in the main polymer chain is covalently functionalized with bovine serum albumin (BSA) by thiol‐ene chemistry, producing conjugates which are resistant to dissociation. The successful formation of the covalent conjugates is confirmed by flow cytometry (FC) and fluorescence correlation spectroscopy (FCS). Transmission electron microscopy (TEM) allows the visualization of the conjugate formation, and the presence of a protein layer surrounding the NPs can be observed. After conjugation with BSA, NPs present reduced cell uptake by HeLa and macrophage RAW264.7 cells, in comparison to uncoated NP. These results demonstrate that it is possible to produce stable conjugates by covalently binding BSA to PGlCL NP through thiol‐ene reaction.  相似文献   

8.
Agarose gel electrophoresis (AGE) has been used extensively for characterization of pure nanomaterials or mixtures of pure nanomaterials. We have evaluated the use of AGE for characterization of Ag nanoparticles (NPs) in an industrial product (described as strong antiseptic). Influence of different stabilizing agents (PEG, SDS, and sodium dodecylbenzenesulfonate), buffers (TBE and Tris Glycine), and functionalizing agents (mercaptosuccinic acid (TMA) and proteins) has been investigated for the characterization of AgNPs in the industrial product using different sizes‐AgNPs standards. The use of 1% SDS, 0.1% TMA, and Tris Glycine in gel, electrophoresis buffer and loading buffer led to the different sizes‐AgNPs standards moved according to their size/charge ratio (obtaining a linear relationship between apparent mobility and mean diameter). After using SDS and TMA, the behavior of the AgNPs in the industrial product (containing a casein matrix) was completely different, being not possible their size characterization. However we demonstrated that AGE with LA‐ICP‐MS detection is an alternative method to confirm the protein corona formation between the industrial product and two proteins (BSA and transferrin) maintaining NPs‐protein binding (what is not possible using SDS‐PAGE).  相似文献   

9.
The emergence of nanoparticles (NPs) has attracted tremendous interest of the scientific community for decades due to their unique properties and potential applications in diverse areas, including drug delivery and therapy. Many novel NPs have been synthesized and used to reduce drug toxicity, improve bio-availability, prolong circulation time, control drug release, and actively target to desired cells or tissues. However, clinical translation of NPs with the goal of treating particularly challenging diseases, such as cancer, will require a thorough understanding of how the NP properties influence their fate in biological systems, especially in vivo. Many efforts have been paid to studying the interactions and mechanisms of NPs and cells. Unless deliberately designed, the NPs in contact with biological fluids are rapidly covered by a selected group of biomolecules especially proteins to form a corona that interacts with biological systems. In this view, the recent development of NPs in drug delivery and the interactions of NPs with cells and proteins are summarized. By understanding the protein-NP interactions, some guidelines for safety design of NPs, challenges and future perspectives are discussed.  相似文献   

10.
Nanomaterials hold promise as multifunctional diagnostic and therapeutic agents. However, the effective application of nanomaterials is hampered by limited understanding and control over their interactions with complex biological systems. When a nanomaterial enters a physiological environment, it rapidly adsorbs proteins forming what is known as the protein 'corona'. The protein corona alters the size and interfacial composition of a nanomaterial, giving it a biological identity that is distinct from its synthetic identity. The biological identity determines the physiological response including signalling, kinetics, transport, accumulation, and toxicity. The structure and composition of the protein corona depends on the synthetic identity of the nanomaterial (size, shape, and composition), the nature of the physiological environment (blood, interstitial fluid, cell cytoplasm, etc.), and the duration of exposure. In this critical review, we discuss the formation of the protein corona, its structure and composition, and its influence on the physiological response. We also present an 'adsorbome' of 125 plasma proteins that are known to associate with nanomaterials. We further describe how the protein corona is related to the synthetic identity of a nanomaterial, and highlight efforts to control protein-nanomaterial interactions. We conclude by discussing gaps in the understanding of protein-nanomaterial interactions along with strategies to fill them (167 references).  相似文献   

11.
Protein corona composition and precise physiological understanding of differentially expressed proteins are key for identifying disease biomarkers. In this report, we presented a distinctive quantitative proteomics table of molecular cell signaling differentially expressed proteins of corona that formed on iron carbide nanoparticles (NPs). High-performance liquid chromatography/electrospray ionization coupled with ion trap mass analyzer (HPLC/ESI-Orbitrap) and MASCOT helped quantify 142 differentially expressed proteins. Among these proteins, 104 proteins showed upregulated behavior and 38 proteins were downregulated with respect to the control, whereas 48, 32 and 24 proteins were upregulated and 8, 9 and 21 were downregulated CW (control with unmodified NPs), CY (control with modified NPs) and WY (modified and unmodified NPs), respectively. These proteins were further categorized on behalf of their regularity, locality, molecular functionality and molecular masses using gene ontology (GO). A STRING analysis was used to target the specific range of proteins involved in metabolic pathways and molecular processing in different kinds of binding functionalities, such as RNA, DNA, ATP, ADP, GTP, GDP and calcium ion bindings. Thus, this study will help develop efficient protocols for the identification of latent biomarkers in early disease detection using protein fingerprints.  相似文献   

12.
To understand the effect of three‐dimensional oligonucleotide structure on protein corona formation, we studied the identity and quantity of human serum proteins that bind to spherical nucleic acid (SNA) nanoparticle conjugates. SNAs exhibit cellular uptake properties that are remarkably different from those of linear nucleic acids, which have been related to their interaction with certain classes of proteins. Through a proteomic analysis, this work shows that the protein binding properties of SNAs are sequence‐specific and supports the conclusion that the oligonucleotide tertiary structure can significantly alter the chemical composition of the SNA protein corona. This knowledge will impact our understanding of how nucleic acid‐based nanostructures, and SNAs in particular, function in complex biological milieu.  相似文献   

13.
Whenever nanoparticles encounter biological fluids like blood, proteins adsorb on their surface and form a so‐called protein corona. Although its importance is widely accepted, information on the influence of surface functionalization of nanocarriers on the protein corona is still sparse, especially concerning how the functionalization of PEGylated nanocarriers with targeting agents will affect protein corona formation and how the protein corona may in turn influence the targeting effect. Herein, hydroxyethyl starch nanocarriers (HES‐NCs) were prepared, PEGylated, and modified on the outer PEG layer with mannose to target dendritic cells (DCs). Their interaction with human plasma was then studied. Low overall protein adsorption with a distinct protein pattern and high specific affinity for DC binding were observed, thus indicating an efficient combination of “stealth” and targeting behavior.  相似文献   

14.
Protein coronas are present extensively at the bio-nano interface due to the natural adsorption of proteins onto nanomaterials in biological fluids. Aside from the robust property of nanoparticles, the dynamics of the protein corona shell largely define their chemical identity by altering interface properties. However, the soft coronas are normally complex and rapidly changing. To real-time monitor the entire formation, we report here a self-regulated electrochemiluminescence (ECL) microscopy based on the interaction of the Ru(bpy)33+ with the nanoparticle surface. Thus, the heterogeneity of the protein corona is in situ observed in single nanoparticle “cores” before and after loading drugs in nanomedicine carriers. The label-free, optical stable and dynamic ECL microscopy minimize misinterpretations caused by the variation of nanoparticle size and polydispersity. Accordingly, the synergetic actions of proteins and nanoparticles properties are uncovered by chemically engineered protein corona. After comparing the protein corona formation kinetics in different complex systems and different nanomedicine carriers, the universality and accuracy of this technique were well demonstrated via the protein corona formation kinetics curves regulated by competitive adsorption of Ru(bpy)33+ and multiple proteins on surface of various carriers. The work is of great significance for studying bio-nano interface in drug delivery and targeted cancer treatment.  相似文献   

15.
Gold nanoparticles (Au NPs) from 5 to 100 nm in size synthesized with HAuCl(4) and sodium citrate were complexed with the plasma protein human serum albumin (HSA). Size, surface charge, and surface plasmon bands of the Au NPs are largely modified by the formation of a protein corona via electrostatic interactions and hydrogen bonding as revealed by thermodynamic data. Negative values of the entropy of binding suggested a restriction in the biomolecule mobility upon adsorption. The structure of the adsorbed protein molecules is slightly affected by the interaction with the metal surface, but this effect is enhanced as the NP curvature decreases. Also, it is observed that the protein molecules adsorbed onto the NP surface are more resistant to complete thermal denaturation than free protein ones as deduced from the increases in the melting temperature of the adsorbed protein. Differences in the conformations of the adsorbed protein molecules onto small (<40 nm) and large NPs were observed on the basis of ζ-potential data and FTIR spectroscopy, also suggesting a better resistance of adsorbed protein molecules to thermal denaturing conditions. We think this enhanced protein stability is responsible for a reduced formation of HSA amyloid-like fibrils in the presence of small Au NPs under HSA fibrillation conditions.  相似文献   

16.
Protein–protein interactions are of utmost importance to an understanding of biological phenomena since non-covalent and therefore reversible couplings between basic proteins leads to the formation of complex regulatory and adaptive molecular systems. Such systems are capable of maintaining their integrity and respond to external stimuli, processes intimately related to living organisms. These interactions, however, span a wide range of dissociation constants, from sub-nanomolar affinities in tight complexes to high-micromolar or even millimolar affinities in weak, transiently formed protein complexes. Herein, we demonstrate how novel NMR and EPR techniques can be used for the characterization of weak protein–protein (ligand) complexes. Applications to intrinsically disordered proteins and transiently formed protein complexes illustrate the potential of these novel techniques to study hitherto unobserved (and unobservable) higher-order structures of proteins.  相似文献   

17.
One of the biggest challenges in the field of nanomedicine is the adsorption of biomolecules on the nanomaterial upon contact with a biological medium. The interactions of the resulting protein corona are essential for their behavior in a biological system. Thus, it is now commonly accepted that understanding the formation and consequently understanding the influence of the protein corona on the biological response is crucial. However, the outcome of the protein corona characterization cannot easily be compared between different studies and techniques, since many different sample preparation procedures exist that are suitable for different materials or methods. Depending on the applied procedure, the nanomaterial–protein system will be altered in a certain way, so that it is necessary to consider the individual influence on the protein corona. Accordingly, the aim of this Minireview is to give an overview of the applied sample preparation methods for the analysis of the protein corona and to evaluate their influence on the outcome of the results especially with regard to the introduced terms “soft” and “hard protein corona”. Special focus will be placed on the comparison of the most commonly used techniques such as centrifugation, magnetic, and chromatographic separation.  相似文献   

18.
Large surface area, small size, strong optical properties, controllable structural features, variety of bioconjugation chemistries, and biocompatibility make many different types of nanoparticles (NPs), such as gold NPs, useful for many biological applications, such as biosensing, cellular imaging, disease diagnostics, drug delivery, and therapeutics. Recently, interactions between proteins and NPs have been extensively studied to understand, control, and utilize the interactions involved in biomedical applications of NPs and several biological processes, such as protein aggregation, for many diseases, including Alzheimer's disease. These studies also offer fundamental knowledge on changes in protein structure, protein aggregation mechanisms, and ways to unravel the roles and fates of NPs within the human body. This review focuses on recent studies on the roles and uses of NPs in protein structural changes and aggregation processes.  相似文献   

19.
Molecularly imprinted polymer nanoparticles (MIP NPs) are antibody-like recognition materials prepared by a template-assisted synthesis. MIP NPs able to target biomolecules, like proteins, are under the spotlight for their great potential in medicine, but efficiently imprinting biological templates is still very challenging. Here we propose generating a molecular imprint in single NPs, by photochemically initiating the polymerization from individual protein templates. In this way, each protein molecule tailors itself its own “polymeric dress”. For this, the template protein is covalently coupled with a photoinitiator, Eosin Y. Irradiated with light at 533 nm, the Eosin moiety acts as an antenna and transfers energy to a co-initiator (an amine), which generates a radical and initiates polymerization. As a result, a polymer network is forming only around the very template molecule, producing cross-linked NPs of 50 nm, with single binding sites showing high affinity (KD 10−9 m ) for their biological target, and selectivity over other proteins.  相似文献   

20.
The concept that the effective unit of interest in the cell-nanomaterial interaction is the particle and its corona of associated proteins is emerging. Here we investigate the compositional evolution of the protein corona of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) cationic liposomes (CLs) and DOTAP/DNA lipoplexes over a wide range of plasma concentrations (2.5-80%). The composition of the hard corona of lipoplexes is quite stable, but that of CLs does evolve considerably. We show that the protein corona of CLs is made of both low-affinity and competitive-binding proteins whose relative abundance changes with the plasma concentration. This result may have deep biological implications for the application of lipid-based gene vectors both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号