首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The Z-vector equations are derived and implemented for solving the response term due to the external electrostatic potentials, and the corresponding contribution is added to the energy gradients in the framework of the fragment molecular orbital (FMO) method. To practically solve the equations for large molecules like proteins, the equations are decoupled by taking advantage of the local nature of fragments in the FMO method and establishing the self-consistent Z-vector method. The resulting gradients are compared with numerical gradients for the test molecular systems: (H(2)O)(64), alanine decamer, hydrated chignolin with the protein data bank (PDB) ID of 1UAO, and a Trp-cage miniprotein construct (PDB ID: 1L2Y). The computation time for calculating the response contribution is comparable to or less than that of the FMO self-consistent charge calculation. It is also shown that the energy gradients for the electrostatic dimer approximation are fully analytic, which significantly reduces the computational costs. The fully analytic FMO gradient is parallelized with an efficiency of about 98% on 32 nodes.  相似文献   

2.
The completely analytic energy gradients are derived and implemented for the two-body fragment molecular orbital (FMO2) method combined with the model core potentials (MCP) and effective fragment potentials (EFP). The many-body terms in EFP require solving coupled-perturbed Hartree-Fock equations, which are derived and implemented. The molecular dynamics (MD) simulations are performed using the FMO2/MCP method for the capped alanine decamer and with the FMO2/EFP method for the zwitterionic conformer of glycine tetramer immersed in the water layer of 6.0 Å (135 water molecules). The results of the MD simulations using the FMO2/EFP and FMO2/MCP gradients show that the total energy is conserved at the time steps less than 1 fs.  相似文献   

3.
Following the brief review of the modern fragment-based methods and other approaches to perform quantum-mechanical calculations of large systems, the theoretical development of the fragment molecular orbital method (FMO) is covered in detail, with the emphasis on the physical properties, which can be computed with FMO. The FMO-based polarizable continuum model (PCM) for treating the solvent effects in large systems and the pair interaction energy decomposition analysis (PIEDA) are described in some detail, and a range of applications of FMO to biological studies is introduced. The factors determining the relative stability of polypeptide conformers (alpha-helix, beta-turn, and extended form) are elucidated using FMO/PCM and PIEDA, and the interactions in the Trp-cage miniprotein construct (PDB: 1L2Y) are analyzed using PIEDA.  相似文献   

4.
The fragment molecular orbital (FMO) method makes possible nearly linear scaling calculations of large molecular systems, such as water clusters, proteins and DNA. In particular, FMO has been widely used in biochemical applications involving protein-ligand binding and drug design. The method has been efficiently parallelized suitable for petascale computing. Many commonly used wave functions and solvent models have been interfaced with FMO. We review the historical background of FMO, and summarize its method development and applications.  相似文献   

5.
We have developed a method for analyzing the (hyper)polarizabilities of open-shell molecular systems. This method employs the (hyper)polarizability densities based on the natural orbitals and occupation numbers, which enables us to analyze the contributions of odd electrons having various open-shell (diradical) characters. Within broken-symmetry, i.e., spin-unrestricted, single-determinant molecular orbital and density functional theory approaches, we can also remove the spin contamination effects on these quantities through spin projection. To do that, an approximate spin projected method has been elaborated and applied to the analysis of the (hyper)polarizability of multi-radical systems. As examples, typical open-shell singlet systems, 1,3-dipoles and rectangular graphene nanoflakes, are examined.  相似文献   

6.
A review is presented of the nonequilibrium Green's function (NEGF) method "gDFTB" for evaluating elastic and inelastic conduction through single molecules employing the density functional tight-binding (DFTB) electronic structure method. This focuses on the possible advantages that DFTB implementations of NEGF have over conventional methods based on density functional theory, including not only the ability to treat large irregular metal-molecule junctions with high nonequilibrium thermal distributions but perhaps also the ability to treat dispersive forces, bond breakage, and open-shell systems and to avoid large band lineup errors. New results are presented indicating that DFTB provides a useful depiction of simple gold-thiol interactions. Symmetry is implemented in DFTB, and the advantages it brings in terms of large savings of computational resources with significant increase in numerical stability are described. The power of DFTB is then harnessed to allow the use of gDFTB as a real-time tool to discover the nature of the forces that control inelastic charge transport through molecules and the role of molecular symmetry in determining both elastic and inelastic transport. Future directions for the development of the method are discussed.  相似文献   

7.
The analytic energy gradients for the combined fragment molecular orbital and polarizable continuum model (FMO/PCM) method are derived and implemented. Applications of FMO/PCM geometry optimization to polyalanine show that the structures obtained with the FMO/PCM method are very close to those obtained with the corresponding full ab initio PCM methods. FMO/PCM (RHF/6‐31G* level) is used to optimize the solution structure of the 304‐atom Trp‐cage miniprotein and the result is in agreement with NMR experiments. The key factors determining the relative stability of the α‐helix, β‐turn and the extended form in solution are elucidated for polyalanine. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

8.
The simulated ab initio molecular orbital (SAMO ) method previously applied to RHF closed-shell and UHF open-shell situations has been applied to open-shell radicals, such as the butyl radical and the pentyl radical, within the RHF open-shell framework. The open-shell Hartree–Fock theory is developed such that a rapidly convergent iterative method for evaluating the SAMO wave-function can be employed. Results closely parallel those for the same systems using the UHF method and are of comparable accuracy to SAMO closed-shell results.  相似文献   

9.
The reliable and precise evaluation of receptor–ligand interactions and pair‐interaction energy is an essential element of rational drug design. While quantum mechanical (QM) methods have been a promising means by which to achieve this, traditional QM is not applicable for large biological systems due to its high computational cost. Here, the fragment molecular orbital (FMO) method has been used to accelerate QM calculations, and by combining FMO with the density‐functional tight‐binding (DFTB) method we are able to decrease computational cost 1000 times, achieving results in seconds, instead of hours. We have applied FMO‐DFTB to three different GPCR–ligand systems. Our results correlate well with site directed mutagenesis data and findings presented in the published literature, demonstrating that FMO‐DFTB is a rapid and accurate means of GPCR–ligand interactions. © 2017 Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

10.
The fragment molecular orbital (FMO) scheme has been successfully used for a variety of large-scale molecules such as proteins and nucleic acids so far. We have applied the FMO calculations to the silicon-containing systems like polysilanes. The error caused by the fragmentation was examined by the Hartree–Fock method and the second-order Møller-Plesset (MP2) perturbation method for the ground state energy. The dynamic polarizability as a linear response property was also evaluated with and without the fragmentation. A series of numerical comparisons showed that the FMO scheme is applicable to silicon-based molecules with reasonable accuracy. This implied a potential availability of FMO calculations for the issues relevant to nanoscience and nanotechnology.  相似文献   

11.
12.
13.
The basis set superposition error-free second-order M?ller-Plesset perturbation theory of intermolecular interactions, based on the "chemical Hamiltonian approach," which has been introduced in Part I, is applied here to open-shell systems by using a new, effective computer realization. The results of the numerical examples considered (CH(4) em leader HO, NO em leader HF) showed again the perfect performance of the method. Striking agreement has again been found with the results of the a posteriori counterpoise correction (CP) scheme in the case of large, well-balanced basis sets, which is also in agreement with a most recent formal theoretical analysis. The difficulties of the CP correction in open-shell systems are also discussed.  相似文献   

14.
The first derivative of the total energy with respect to nuclear coordinates (the energy gradient) in the fragment molecular orbital (FMO) method is applied to second order M?ller-Plesset perturbation theory (MP2), resulting in the analytic derivative of the correlation energy in the external self-consistent electrostatic field. The completely analytic energy gradient equations are formulated at the FMO-MP2 level. Both for molecular clusters (H(2)O)(64) and a system with fragmentation across covalent bonds, a capped alanine decamer, the analytic FMO-MP2 energy gradients with the electrostatic dimer approximation are shown to be complete and accurate by comparing them with the corresponding numeric gradients. The developed gradient is parallelized with the parallel efficiency of about 97% on 32 Pentium4 nodes connected by Gigabit Ethernet.  相似文献   

15.
A consideration of the surrounding environment is necessary for a meaningful analysis of the reaction activity in large molecular systems. We propose an approach to perform unrestricted Hartree-Fock (UHF) calculations within the framework of the fragment molecular orbital (FMO) method (FMO-UHF) to study large systems with unpaired electrons. Prior to an energy analysis one has to optimize geometry, which requires an accurate analytic energy gradient. We derive the FMO-UHF energy and its analytic gradient and implement them into GAMESS. The performance of FMO-UHF is evaluated for a solvated organic molecule and a solvated metal complex, as well as for the active part of a protein, in terms of energy, gradient, and geometry optimization.  相似文献   

16.
Equation-of-motion spin-flip coupled-cluster method with single and double substitutions (EOM-SF-CCSD) is employed to study how substituents affect the electronic states' ordering in meta-xylylene diradicals. The electronegativity of substituents and the incorporation of a heteroatom are found to have a negligible effect. The effect of charges on energy gaps is much more pronounced, in agreement with the proposal of Dougherty and co-workers [J. Am. Chem. Soc. 118, 1452 (1996)]. Resonance structure theory and molecular orbital analysis are employed to explain this phenomenon. The changes in the exocyclic C-C bond length in substituted meta-xylylenes, derived from equilibrium structures calculated by using analytic gradients for the EOM-SF-CCSD method, support the original resonance theory explanation by West et al. However, a similar resonance-theory-based reasoning fails to explain the quantitative difference between positively and negatively charged systems as well as the observed strong stabilization of an open-shell singlet state in the N-oxidized pyridinium analog of meta-xylylene.  相似文献   

17.
18.
In the field of drug discovery, it is important to accurately predict the binding affinities between target proteins and drug applicant molecules. Many of the computational methods available for evaluating binding affinities have adopted molecular mechanics‐based force fields, although they cannot fully describe protein–ligand interactions. A noteworthy computational method in development involves large‐scale electronic structure calculations. Fragment molecular orbital (FMO) method, which is one of such large‐scale calculation techniques, is applied in this study for calculating the binding energies between proteins and ligands. By testing the effects of specific FMO calculation conditions (including fragmentation size, basis sets, electron correlation, exchange‐correlation functionals, and solvation effects) on the binding energies of the FK506‐binding protein and 10 ligand complex molecule, we have found that the standard FMO calculation condition, FMO2‐MP2/6‐31G(d), is suitable for evaluating the protein–ligand interactions. The correlation coefficient between the binding energies calculated with this FMO calculation condition and experimental values is determined to be R = 0.77. Based on these results, we also propose a practical scheme for predicting binding affinities by combining the FMO method with the quantitative structure–activity relationship (QSAR) model. The results of this combined method can be directly compared with experimental binding affinities. The FMO and QSAR combined scheme shows a higher correlation with experimental data (R = 0.91). Furthermore, we propose an acceleration scheme for the binding energy calculations using a multilayer FMO method focusing on the protein–ligand interaction distance. Our acceleration scheme, which uses FMO2‐HF/STO‐3G:MP2/6‐31G(d) at Rint = 7.0 Å, reduces computational costs, while maintaining accuracy in the evaluation of binding energy. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
The three‐body fragment molecular orbital (FMO3) method is formulated for density‐functional tight‐binding (DFTB). The energy, analytic gradient, and Hessian are derived in the gas phase, and the energy and analytic gradient are also derived for polarizable continuum model. The accuracy of FMO3‐DFTB is evaluated for five proteins, sodium cation in explicit solvent, and three isomers of polyalanine. It is shown that FMO3‐DFTB is considerably more accurate than FMO2‐DFTB. Molecular dynamics simulations for sodium cation in water are performed for 100 ps, yielding radial distribution functions and coordination numbers. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
We have developed the spin-unrestricted divide-and-conquer (DC)-based linear-scaling self-consistent field method for treating open-shell systems (Kobayashi et al. in Chem Phys Lett 500:172, 2010). Because the method does not require the position of excess spins or charges, it made the treatment of large spin-delocalized systems tractable. The present study extends the DC-based unrestricted open-shell scheme to the correlated second-order M?ller?CPlesset perturbation (MP2) theory. Numerical applications to polyene cations demonstrate that the present method gives highly accurate results with less computational costs even for spin-delocalized systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号