首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
Three macrocyclic oligocholates containing a carboxyl group, a guanidinium ion, and a Cbz-protected amine, respectively, were studied as membrane transporters for hydrophilic molecules. To permeate glucose across lipid bilayers, the macrocycles stacked over one another to form a transmembrane nanopore, driven by a strong tendency of the water molecules in the internal cavities of the amphiphilic macrocycles to aggregate in a nonpolar environment. To transport larger guests such as carboxyfluorescein (CF), the macrocycles acted as carriers to shuttle the guest across the membrane. Hydrogen-bonds between the side chains of the macrocycles strongly affected the transport properties. Surprisingly, the carboxyl group turned out to be far more effective at assisting the aggregation of the oligocholate macrocycles in the membrane than the much stronger carboxylate-guanidinium salt bridge, likely due to competition from the phosphate groups of the lipids for the guanidinium.  相似文献   

2.
Adsorption of asphaltenes onto a polar substrate (e.g., a mineral) was modeled with dissipative particle dynamics (DPD) simulations, using continental asphaltene models. The adsorption mechanisms in 10–20% wt, of asphaltene in toluene/ heptane solutions were studied (well above the solubility limit). The structure in the adsorbed layer was highly sensitive to the presence of polar groups in the alkyl side chains and heteroatom content in the aromatic ring structure. Four types of asphaltene models were used: completely apolar (zero adsorption), apolar chains and polar heteroatoms, polar chains and no heteroatoms, and polar chains and heteroatoms (maximum adsorption). One hundred asphaltene monomers were distributed homogeneously in the solvent initially, in a ~(10 nm)3 domain.

Asphaltene monomers adsorbed irreversibly on the substrate via the polar group in the side chains, resulting in an average perpendicular orientation of the aromatic rings relative to the substrate. More frequent π–π stacking of the aromatic rings occurred for less solubility (more heptane), as in aggregates. With apolar side chains, only the heteroatoms in the aromatic ring structure had affinity to the substrate, but the ring plane did not have any preferred direction.

An important finding is that the aromatic ring assemblies “shielded” the substrate and polar groups that were anchored to the substrate, resulting in an effective non-polar surface layer seen by asphaltenes in the bulk, leading to much lower adsorption probability of the remaining asphaltenes. This “adsorption termination” effect leads to mono-layer formation. Continued adsorption with multilayering and reversible nanoaggregate adsorption occurred when both side chains in the model asphaltene (located on opposite sides of the aromatic sheet) contained polar groups, with a higher probability of exposing further polar groups to the bulk asphaltene. The general conclusion is that the number and position of the polar groups in side chains determine to a large degree the adsorption and aggregation behavior/efficiency of (continental) asphaltenes, in line with experimental evidence. The heteroatoms in the aromatic ring structure plays a more passive role in this context, only by providing organization via more π–π stacking in the adsorbed layer, and in aggregates.  相似文献   

3.
m-Diethynylbenzene macrocycles (DBMs), buta-1,3-diyne-bridged [4(n)]metacyclophanes, have been synthesized and their self-association behaviors in solution were investigated. Cyclic tetramers, hexamers, and octamers of DBMs having exo-annular octyl, hexadecyl, and 3,6,9-trioxadecyl ester groups were prepared by intermolecular oxidative coupling of dimer units or intramolecular cyclization of the corresponding open-chain oligomers. The aggregation properties were investigated by two methods, the (1)H NMR spectra and the vapor pressure osmometry (VPO). Although some discrepancies were observed between the association constants obtained from the two methods, the qualitative view was consistent with each other. The analysis of self-aggregation by VPO revealed unique aggregation behavior of DBMs in acetone and toluene, which was not elucidated by the NMR method. Namely, the association constants for infinite association are several times larger than the dimerization constant, suggesting that the aggregation is enhanced by the formation of dimers (a nucleation mechanism). In polar solvents, DBMs aggregate more strongly than in chloroform due to the solvophobic interactions between the macrocyclic framework and the solvents. Moreover, DBMs self-associate in aromatic solvents such as toluene and o-xylene more readily than in chloroform. In particular, the hexameric DBM having a large macrocyclic cavity exhibits extremely large association constants in aromatic solvents. By comparing the aggregation properties of DBMs with the corresponding acyclic oligomers, the effect of the macrocyclic structure on the aggregation propensity was clarified. Finally, it turned out that DBMs tend to aggregate more readily than the corresponding phenylacetylene macrocycles, acetylene-bridged [2(n)]metacyclophanes, owing to the withdrawal of the electron density from the aromatic rings by the butadiyne linkages which facilitates pi-pi stacking interactions.  相似文献   

4.
We present a crystallographic study that systematically investigates the effects of the n-alkyl side-chain length on the crystal packing in shape-persistent macrocycles. The solid-state packing of carbazole-ethynylene-containing macrocycles is sensitive to the alkyl-chain length. In macrocycles containing n-alkyl side chains up to nine carbons in length, face-on aromatic π interactions predominate, while the addition of one carbon leads to a completely different packing arrangement. Macrocycles with C(10) or C(11) chains exhibit a novel packing motif wherein the alkyl chains intercalate between macrocycles, leading in one case to continuous solvent-filled channels. When crystals of the C(10) macrocycle are bathed in solvent, the included molecules exchange with the external solvent, and the alkyl chain disorder changes in response to changes in the guest volume in order to retain crystallinity. Powder X-ray diffraction data indicate that alkyl-macrocycle interactions in the longer chains "emulate" the distances typical of face-to-face π interactions, leading to deceptive indicators of π stacking.  相似文献   

5.
The kinetic effects of DBSA (dodecyl benzene sulfonic acid) and a linear amphihile on asphaltene aggregation was investigated, using dissipative particle dynamics molecular simulations. The simulation results indicated that without inhibitor, diffusion-limited asphaltene aggregation can be initiated by a kinetic/diffusive capture process between polar side chain groups rather than by interaction between polyaromatic rings. The most likely reason for this is that the side chains have higher diffusive mobility than the more massive aromatic ring structures. The DBSA acidic head groups adhered to the asphaltene side chain polar groups (the basic functional groups), resulting in lowered mobility of the side chain/DBSA complexes, thereby suppressing asphaltene aggregation initiation. A more mobile amphiphilic inhibitor without the aromatic ring gave a higher asphaltene aggregation rate. Adsorption of asphaltenes on a solid surface was suppressed with DBSA, due to an adsorbed mono-layer of DBSA that occupied a significant fraction of the surface area.  相似文献   

6.
A macrocyclic and a linear trimer of a facially amphiphilic cholate building block were labeled with a fluorescent dansyl group. The environmentally sensitive fluorophore enabled the aggregation of the two oligocholates in lipid membranes to be studied by fluorescence spectroscopy. Concentration-dependent emission wavelength and intensity revealed a higher concentration of water for the cyclic compound. Both compounds were shown by the red-edge excitation shift (REES) to be located near the membrane/water interface at low concentrations, but the cyclic trimer was better able to migrate into the hydrophobic core of the membrane than the linear trimer. Fluorescent quenching by a water-soluble (NaI) and a lipid-soluble (TEMPO) quencher indicated that the cyclic trimer penetrated into the hydrophobic region of the membrane more readily than the linear trimer, which preferred to stay close to the membrane surface. The fluorescent data corroborated with the previous leakage assays that suggested the stacking of the macrocyclic cholate trimer into transmembrane nanopores, driven by the strong associative interactions of water molecules inside the macrocycles in a nonpolar environment.  相似文献   

7.
Ionic perylenebis(dicarboximide)s 1-5 were synthesized. The aggregation and liquid-crystalline properties of these compounds in aqueous solutions were investigated. In the concentration range of approximately 5 x 10-7-5 x 10-4 M, the structures of the ammonium side chains and counterions did not have a significant effect on the electronic transition properties and H-aggregate formation of these compounds. However, the liquid-crystalline phase properties varied with the structure of the side chains and the counterions. Ionic perylenebis(dicarboximide)s 1, 3, and 5 with chloride ions formed nematic (N) phases from the isotropic (I) phase, while 2 and 4 with p-methylbenzenesulfonate ions formed chromonic ribbons from the I phase. Studies by polarized light microscopy and 2H NMR spectroscopy indicated that the N phase of 5 (with gem dimethyl groups) formed at higher concentrations than those observed for 1 and 3 at the same temperature. Furthermore, the N phase of 5 was less ordered compared to those of 1 and 3 at a similar concentration and temperature, presumably due to the bulkiness of the side chains of 5 that hindered the stacking and pi-interactions of the aromatic rings.  相似文献   

8.
比较了3种主链结构相同而侧链结构不同的磺化聚芳醚(SPAE)材料的性能. 分析了侧链结构对聚合物的吸水、 溶胀及质子传导行为的影响. 结果表明, 在相同的离子交换容量(IEC)条件下, 具有柔顺脂肪族侧链的聚芳醚材料具有较高的质子传导率. 其原因是由于柔顺的脂肪族侧链比刚性的芳香族侧链更易运动, 有利于侧链末端磺酸基团的聚集, 进而形成离子簇. 3种聚合物微观形貌的分析结果表明, 含柔顺侧链结构的聚合物薄膜具有更大的质子传输通道, 其结果与聚合物的宏观吸水和传导现象相吻合.  相似文献   

9.
The synthesis of shape-persistent macrocycles based on the phenyl-ethynyl backbone containing various extraannular alkyl side chains is described. Although compound solubility increases with increasing size of the side groups, decreasing the solvent polarity induces aggregation of the rings by nonspecific interactions. This was investigated by proton NMR spectroscopy. The magnitude of aggregation can be varied by using solvent mixtures of different hexane content, supporting the model of a solvophobic effect. From 1,2,4-trichlorobenzene solution the macrocycle 1c adsorbs at the surface of highly oriented pyrolitic graphite (HOPG). The two-dimensional order of the structure was investigated by scanning tunneling microscopy (STM) revealing the formation of a two-dimensional lattice of p1(2)mm symmetry with lattice parameters A = 3.6 nm, B = 5.7 nm, and Gamma = 74 degrees.  相似文献   

10.
A number of bacterial heme prosthetic groups whose structures deviate significantly from theubiquitous protoheme have been discovered recently. These new pigments contain dramatic modifica-tions in the aromatic core and/or side chains. Examples include heme d and heme o as well as hemed_1. Synthetic approaches of these macrocycles and their possible biosynthetic pathways will be dis-cussed.  相似文献   

11.
Oligoamide macrocycles 1d and 1e, which carry membrane-compatible side chains and contain a hydrophilic, noncollapsible cavity, were found to mediate high ion flux across a lipid bilayer, as demonstrated by results from (23)Na NMR and planar bilayer conductance measurements. The measured transmembrane single channel currents are very high, rivaling those typically associated with pore-forming protein toxins. The obtained results have demonstrated the promise of developing large, highly conducting channels based on nanopores formed by oligoamide macrocycles.  相似文献   

12.
CHANG CHI-K 《有机化学》1993,13(2):171-174
发现了一些细菌血红蛋白卟啉辅基, 它们的结构与无处不在的原血红蛋白素。这些新色素在芳核和侧链包含有引人注目的改性, 样品有血红蛋白素α, ο和α1,讨论了这些大环的合成途径和它们可能的生物合成途径。  相似文献   

13.
As the third-generation rigid macrocycles evolved from progenitor 1, cyclic aromatic oligoamides 3, with a backbone of reduced constraint, exhibit extremely strong stacking with an astoundingly high affinity (estimated lower limit of K dimer > 1013 M–1 in CHCl3), which leads to dispersed tubular stacks that undergo further assembly in solution. Computational study reveals a very large binding energy (–49.77 kcal mol–1) and indicates highly cooperative local dipole interactions that account for the observed strength and directionality for the stacking of 3. In the solid-state, X-ray diffraction (XRD) confirms that the aggregation of 3 results in well-aligned tubular stacks. The persistent tubular assemblies of 3, with their non-deformable sub-nm pore, are expected to possess many interesting functions. One such function, transmembrane ion transport, is observed for 3.  相似文献   

14.
A series of aromatic mono- or diamido-thiodigalactoside derivatives were synthesized and studied as ligands for galectin-1, -3, -7, -8N terminal domain, and -9N terminal domain. The affinity determination in vitro with competitive fluorescence-polarization experiments and thermodynamic analysis by isothermal microcalorimetry provided a coherent picture of structural requirements for arginine-arene interactions in galectin-ligand binding. Computational studies were employed to explain binding preferences for the different galectins. Galectin-3 formed two almost ideal arene-arginine stacking interactions according to computer modeling and also had the highest affinity for the diamido-thiodigalactosides (K(d) below 50 nM). Site-directed mutagenesis of galectin-3 arginines involved in binding corroborated the importance of their interaction with the aromatic diamido-thiodigalactosides. Furthermore, the arginine mutants revealed distinct differences between free, flexible, and solvent-exposed arginine side chains and tightly ion-paired arginine side chains in interactions with aromatic systems.  相似文献   

15.
Ion mobility mass spectrometry and PM7 semiempirical calculations are effective complementary methods to study gas phase formation of noncovalent complexes from vaselike macrocycles. The specific association of large‐ring chiral hexaimines, derived from enantiomerically pure trans‐1,2‐diaminocyclohexane and various isophthaldehydes, is driven mostly by CH–π and ππ stacking interactions. The isotrianglimine macrocycles are prone to form two types of aggregates: tail‐to‐tail and head‐to‐head (capsule) dimers. The stability of the tail‐to‐tail dimers is affected by the size and electronic properties of the substituents at the C‐5 position of the aromatic ring. Electron‐withdrawing groups stabilize the aggregate, whereas bulky or electron‐donating groups destabilize the complexes.  相似文献   

16.
The achiral backbone of oligo-N-substituted glycines or "peptoids" lacks hydrogen-bond donors, effectively preventing formation of the regular, intrachain hydrogen bonds that stabilize peptide alpha-helical structures. Yet, when peptoids are N-substituted with alpha-chiral, aromatic side chains, oligomers with as few as five residues form stable, chiral, polyproline-like helices in either organic or aqueous solution. The adoption of chiral secondary structure in peptoid oligomers is primarily driven by the steric influence of these bulky, chiral side chains. Interestingly, peptoid helices of this class exhibit intense circular dichroism (CD) spectra that closely resemble those of peptide alpha-helices. Here, we have taken advantage of this distinctive spectroscopic signature to investigate sequence-related factors that favor and disfavor stable formation of peptoid helices of this class, through a comparison of more than 30 different heterooligomers with mixed chiral and achiral side chains. For this family of peptoids, we observe that a composition of at least 50% alpha-chiral, aromatic residues is necessary for the formation of stable helical structure in hexameric sequences. Moreover, both CD and 1H-13C HSQC NMR studies reveal that these short peptoid helices are stabilized by the placement of an alpha-chiral, aromatic residue on the carboxy terminus. Additional stabilization can be provided by the presence of an "aromatic face" on the helix, which can be patterned by positioning aromatic residues with three-fold periodicity in the sequence. Extending heterooligomer chain length beyond 12-15 residues minimizes the impact of the placement, but not the percentage, of alpha-chiral aromatic side chains on overall helical stability. In light of these new data, we discuss implications for the design of helical, biomimetic peptoids based on this structural motif.  相似文献   

17.
Dynamic covalent polymers of different topology have been synthesized from an aromatic dialdehyde and α,ω-dinitroalkanes via the nitroaldol reaction. All dinitroalkanes yielded dynamers with the dialdehyde, where the length of the dinitroalkane chain played a vital role in determining the structure of the final products. For longer dinitroalkanes, linear dynamers were produced, where the degree of polymerization reached a plateau at higher feed concentrations. In the reactions involving 1,4-dinitrobutane and 1,5-dinitropentane, specific macrocycles were formed through depolymerization of the linear chains, further driven by precipitation. At lower temperature, the same systemic self-sorting effect was also observed for the 1,6-dinitrohexane-based dynamers. Moreover, the dynamers showed a clear adaptive behavior, displaying depolymerization and rearrangement of the dynamer chains in response to alternative building blocks as external stimuli.  相似文献   

18.
Oxidative coupling of activated aryl groups attached to β-positions of the porphyrin ring provides convenient access to derivatives containing peripherally fused phenanthrene and benzo[g]chrysene units. Tetra(benzochryseno)porphyrin, reported here for the first time, contains a nonplanar, sterically locked π system and shows very intense electronic absorptions in the Q range of the electronic spectrum. Tetraphenanthroporphyrins show a tendency to aggregate in solution. In one case, a discrete dimer is formed, whose structure was investigated spectroscopically and theoretically. Derivatives bearing long alkyl chains are mesomorphic and exhibit columnar phases (tetraphenanthroporphyrins) and a monoclinic 3D phase (tetrabenzochrysenoporphyrin). The symmetry of column packing in the columnar phases is dependent on the number of alkyl chains per molecule. X-ray diffraction measurements show that, in spite of their nonplanarity, the aromatic cores in the mesophases are tightly stacked within the column. The corresponding stacking patterns were derived from the structure of the dimer, on the basis of geometrical analysis and molecular modeling.  相似文献   

19.
采用分子间Glaser半环闭环法合成了带内取向柔性多醚链的苯炔大环.用1H NMR,13C NMR,HRMS,UV及PL(photduminescence)确证了目标大环结构,凝胶色谱测定了目标大环纯度.经偏光显微镜(POM)和差热分析仪(DSC)测试表明大环没有呈现预期的液晶性质,可能是由于环内柔性链过于拥挤,不能形成与环平面共面结构,以至于难于进行有序堆积的缘故.  相似文献   

20.
Planar macrocyclic fluoropentamers as supramolecular organogelators   总被引:1,自引:0,他引:1  
Ren C  Xu S  Xu J  Chen H  Zeng H 《Organic letters》2011,13(15):3840-3843
Despite their great diversities, 2D-shaped macrocycles that can serve as the organogelators have been surprisingly rare; two planar macrocyclic fluoropentamers designed by us were highly able to gelate organic solvents, largely derived from their strong tendency to form 1D stacked fibrillar structures stabilized by both interplanar H-bonds and π-π stacking forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号