首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mixing efficiency of a flow advecting a passive scalar sustained by steady sources and sinks is naturally defined in terms of the suppression of bulk scalar variance in the presence of stirring, relative to the variance in the absence of stirring. These variances can be weighted at various spatial scales, leading to a family of multi-scale mixing measures and efficiencies. We derive a priori estimates on these efficiencies from the advection-diffusion partial differential equation, focusing on a broad class of statistically homogeneous and isotropic incompressible flows. The analysis produces bounds on the mixing efficiencies in terms of the Péclet number, a measure of the strength of the stirring relative to molecular diffusion. We show by example that the estimates are sharp for particular source, sink and flow combinations. In general the high-Péclet-number behavior of the bounds (scaling exponents as well as prefactors) depends on the structure and smoothness properties of, and length scales in, the scalar source and sink distribution. The fundamental model of the stirring of a monochromatic source/sink combination by the random sine flow is investigated in detail via direct numerical simulation and analysis. The large-scale mixing efficiency follows the upper bound scaling (within a logarithm) at high Péclet number but the intermediate and small-scale efficiencies are qualitatively less than optimal. The Péclet number scaling exponents of the efficiencies observed in the simulations are deduced theoretically from the asymptotic solution of an internal layer problem arising in a quasi-static model.  相似文献   

2.
Mixing in open incompressible flows is studied in a model problem with inhomogeneous passive scalar injection on an inlet boundary. As a measure of the efficiency of stirring, the bulk scalar concentration variance is bounded, and the bound is shown to be sharp at low Péclet number. Although no specific flow saturating the bound at high Péclet number is produced here, the estimate is conjectured to be approached for flows possessing sufficiently sustained chaotic regions.  相似文献   

3.
The statistical behaviour and the modelling of turbulent scalar flux transport have been analysed using a direct numerical simulation (DNS) database of head-on quenching of statistically planar turbulent premixed flames by an isothermal wall. A range of different values of Damköhler, Karlovitz numbers and Lewis numbers has been considered for this analysis. The magnitudes of the turbulent transport and mean velocity gradient terms in the turbulent scalar flux transport equation remain small in comparison to the pressure gradient, molecular dissipation and reaction-velocity fluctuation correlation terms in the turbulent scalar flux transport equation when the flame is away from the wall but the magnitudes of all these terms diminish and assume comparable values during flame quenching before vanishing altogether. It has been found that the existing models for the turbulent transport, pressure gradient, molecular dissipation and reaction-velocity fluctuation correlation terms in the turbulent scalar flux transport equation do not adequately address the respective behaviours extracted from DNS data in the near-wall region during flame quenching. Existing models for transport equation-based closures of turbulent scalar flux have been modified in such a manner that these models provide satisfactory prediction both near to and away from the wall.  相似文献   

4.
本文采用直接数值模拟方法,在具有平均标量梯度的各向同性湍流中,研究被动标量的小尺度结构特性及其与湍流场中应变与涡量的关系.对欧拉统计量及拉格朗日统计量的统计表明:标量耗散的形成主要是由于标量梯度同流场的应变张量压缩主轴耦合的结果,而涡量对标量梯度的形成只有较弱的影响,然而它可以间接影响大强度标量耗散的产生.强标量耗散的细微片状结构的形成时间尺度大约为10倍Kolmogrov时间尺度;在形成强标量梯度的细微片状结构过程中,应变强度随标量梯度同步增大,而涡量则先减小后增大,并在5倍Kolmogorov时间尺度时达到最大.  相似文献   

5.
We explore the evolution of the probability density function (PDF) for an initially deterministic passive scalar diffusing in the presence of a uni-directional, white-noise Gaussian velocity field. For a spatially Gaussian initial profile we derive an exact spatio-temporal PDF for the scalar field renormalized by its spatial maximum. We use this problem as a test-bed for validating a numerical reconstruction procedure for the PDF via an inverse Laplace transform and orthogonal polynomial expansion. With the full PDF for a single Gaussian initial profile available, the orthogonal polynomial reconstruction procedure is carefully benchmarked, with special attentions to the singularities and the convergence criteria developed from the asymptotic study of the expansion coefficients, to motivate the use of different expansion schemes. Lastly, Monte-Carlo simulations stringently tested by the exact formulas for PDF’s and moments offer complete pictures of the spatio-temporal evolution of the scalar PDF’s for different initial data. Through these analyses, we identify how the random advection smooths the scalar PDF from an initial Dirac mass, to a measure with algebraic singularities at the extrema. Furthermore, the Péclet number is shown to be decisive in establishing the transition in the singularity structure of the PDF, from only one algebraic singularity at unit scalar values (small Péclet), to two algebraic singularities at both unit and zero scalar values (large Péclet).  相似文献   

6.
This paper considers the one-dimensional advection and diffusion of a passive scalar in the context of baker's maps of the unit interval. Our main interest is the thermal transport between two points held at fixed temperatures, when a deterministic sequence of maps of various scales are involved. Molecular diffusion occurs during the periods of rest between maps. We focus on the behavior of the transport in the limit of infinite Péclet number (or small molecular diffusion). Various asymptotic results are presented and compared with numerical calculations. Convergence to turbulent transport independent of molecular diffusion is observed as the number of scales is increased.This paper is dedicated to Jerry Percus on the occasion of his 65th birthday.  相似文献   

7.
Precise necessary and sufficient conditions on the velocity statistics for mean field behavior in advection-diffusion by a steady incompressible velocity field are developed here. Under these conditions, a rigorous Stieltjes integral representation for effective diffusivity in turbulent transport is derived. This representation is valid for all Péclet numbers and provides a rigorous resummation of the divergent perturbation expansion in powers of the Péclet number. One consequence of this representation is that convergent upper and lower bounds on effective diffusivity for all Peclet numbers can be obtained utilizing a prescribed finite number of terms in the perturbation series. Explicit rigorous examples of steady incompressible velocity fields are constructed which have effective diffusivities realizing the simplest upper or lower bounds for all Péclet numbers. A nonlocal variational principle for effective diffusivity is developed along with applications to advection-diffusion by random arrays of vortices. A new class of rigorous examples is introduced. These examples have an explicit Stieltjes measure for the effective diffusivity; furthermore, the effective diffusivity behaves likek 0(Pe)1/2 in the limit of large Péclet numbers wherek 0 is the molecular diffusivity. Formal analogies with the theory of composite materials are exploited systematically.Research partially supported by NSF DMS 90-05799 and ARO DAAL 03-89-K-0039 and AFOSR-90-0090Research partially supported by NSF DMS 87-02864, ARO DAAL 03-89-K-0013 and ONR N 00014-89-J-1044  相似文献   

8.
The statistics of a passive scalar along inertial particle trajectory in homogeneous isotropic turbulence with a mean scalar gradient is investigated by using direct numerical simulation. We are interested in the influence of particle inertia on such statistics, which is crucial for further understanding and development of models in non-isothermal gas-particle flows. The results show that the scalar variance along particle trajectory decreases with the increasing particle inertia firstly; when the particle's Stokes number St is less than 1.0, it reaches the minimal value when St is around 1.0, then it increases if St increases further. However, the scalar dissipation rate along the particle trajectory shows completely contrasting behavior in comparison with the scalar variance. The mechanical-to-thermal time scale ratios averaged along particle, (r)p, are approximately two times smaller than that computed in the Eulerian frame r, and stay at nearly 1.77 with a weak dependence on particle inertia. In addition, the correlations between scalar dissipation and flow structure characteristics along particle trajectories, such as strain and vorticity, are also computed, and they reach their maximum and minimum, 0.31 and 0.25, respectively, when St is around 1.0.  相似文献   

9.
In this work we use 3D direct numerical simulations (DNS) to investigate the average velocity conditioned on a conserved scalar in a double scalar mixing layer (DSML). The DSML is a canonical multistream flow designed as a model problem for the extensively studied piloted diffusion flames. The conditional mean velocity appears as an unclosed term in advanced Eulerian models of turbulent non-premixed combustion, like the conditional moment closure and transported probability density function (PDF) methods. Here it accounts for inhomogeneous effects that have been found significant in flames with relatively low Damköhler numbers. Today there are only a few simple models available for the conditional mean velocity and these are discussed with reference to the DNS results. We find that both the linear model of Kutznetzov and the Li and Bilger model are unsuitable for multi stream flows, whereas the gradient diffusion model of Pope shows very close agreement with DNS over the whole range of the DSML. The gradient diffusion model relies on a model for the conserved scalar PDF and here we have used a presumed mapping function PDF, that is known to give an excellent representation of the DNS. A new model for the conditional mean velocity is suggested by arguing that the Gaussian reference field represents the velocity field, a statement that is evidenced by a near perfect agreement with DNS. The model still suffers from an inconsistency with the unconditional flux of conserved scalar variance, though, and a strategy for developing fully consistent models is suggested.  相似文献   

10.
An accurate and efficient hybrid numerical method is developed for direct numerical simulation of passive scalar in homogeneous turbulence for the Schmidt number 1 and 50. The hybrid method uses the standard Fourier spectral method for the incompressible Navier–Stokes equation and the combined compact difference scheme for the passive scalar transport equation. Accuracy of the method is carefully examined by comparing with the full spectral method regarding the spectra, probability density function, field structure of the passive scalar, and is found to be very satisfactory. The computational time for the hybrid method is decreased by 26% for the Schmidt number 1 when compared to the full spectral method, and by 77% for the Schmidt number 50 when the number of grid points for the velocity field is reduced under the scale separation.  相似文献   

11.
Magnetostatic attraction may lead to formation of aggregates in stable colloidal magnetic suspensions and magneto-rheological suspensions. The aggregation problem of magnetic composites under differential sedimentation is a key problem in the control of the instability of non-Brownian suspensions. Against these attractive forces are the electrostatic repulsion and the hydrodynamic interactions acting as stabilizing effects to the suspension. This work concerns an investigation of the pairwise interaction of magnetic particles in a dilute sedimenting suspension. We focus attention on suspensions where the Péclet number is large (negligible Brownian motion) and where the Reynolds number (negligible inertia) is small. The suspension is composed of magnetic micro-spheres of different radius and density immersed in a Newtonian fluid moving under the action of gravity. The theoretical calculations are based on direct computations of the hydrodynamic and the magnetic interactions among the rigid spheres in the regime of low particle Reynolds number. From the limiting trajectory in which aggregation occurs, we calculate the collision efficiency, representing the dimensionless rate at which aggregates are formed. The numerical results show clear evidence that the hydrodynamic interactions are of fundamental relevance in the process of magnetic particle aggregation. We compare the stabilizing effects between electrostatic repulsion and hydrodynamic interactions.  相似文献   

12.
Decaying homogeneous isotropic turbulence with an imposed mean scalar gradient is investigated numerically, thanks to a specific eddy-damped quasi-normal Markovian closure developed recently for passive scalar mixing in homogeneous anisotropic turbulence (BGC). The present modelling is compared successfully with recent direct numerical simulations and other models, for both very large and small Prandtl numbers. First, scalings for the cospectrum and scalar variance spectrum in the inertial range are recovered analytically and numerically. Then, at large Reynolds numbers, the decay and growth laws for the scalar variance and mixed velocity–scalar correlations, respectively, derived in BGC, are shown numerically to remain valid when the Prandtl number strongly departs from unity. Afterwards, the normalised correlation ρwθ is found to decrease in magnitude at a fixed Reynolds number when Pr either increases or decreases, in agreement with earlier predictions. Finally, the small scales return to isotropy of the scalar second-order moments is found to depend not only on the Reynolds number, but also on the Prandtl number.  相似文献   

13.
Three-dimensional n-heptane spray flames in a swirl combustor are investigated by means of direct numerical simulation (DNS) to provide insight into realistic spray evaporation and combustion as well as relevant modeling issues. The variable-density, low-Mach number Navier–Stokes equations are solved using a fully conservative and kinetic energy conserving finite difference scheme in cylindrical coordinates. Dispersed droplets are tracked in a Lagrangian framework. Droplet evaporation is described by an equilibrium model. Gas combustion is represented using an adaptive one-step irreversible reaction. Two different cases are studied: a lean case that resembles a lean direct injection combustion, and a rich case that represents the primary combustion region of a rich-burn/quick-quench/lean-burn combustor. The results suggest that premixed combustion contribute more than 70% to the total heat release rate, although diffusion flame have volumetrically a higher contribution. The conditional mean scalar dissipation rate is shown to be strongly influenced, especially in the rich case. The conditional mean evaporation rate increases almost linearly with mixture fraction in the lean case, but shows a more complex behavior in the rich case. The probability density functions (PDF) of mixture fraction in spray combustion are shown to be quite complex. To model this behavior, the formulation of the PDF in a transformed mixture fraction space is proposed and demonstrated to predict the DNS data reasonably well.  相似文献   

14.
In 1993, Majda proposed a simple, random shear model from which scalar intermittency was rigorously predicted for the invariant probability measure of passive tracers. In this work, we present an integral formulation for the tracer measure, which leads to a new, comprehensive study on its temporal evolution based on Monte Carlo simulation and direct numerical integration. An interesting, non-monotonic “breathing” phenomenon is discovered from these results and carefully defined, with a solid example for special initial data to predict such phenomenon. The signature of this phenomenon may persist at long time, characterized by the approach of the PDF core to its infinite time, invariant value. We find that this approach may be strongly dependent on the non-dimensional Péclet number, of which the invariant measure itself is independent. Further, the “breathing” PDF is recovered as a new invariant measure in a distinguished time scale in the diffusionless limit. Rigorous asymptotic analysis is also performed to identify the Gaussian core of the invariant measures, and the critical rate at which the heavy, stretched exponential regime propagates towards the tail as a function of time is calculated.  相似文献   

15.
Direct numerical simulations (DNS) or experiments for the very high Reynolds (Re) and Péclet (Pe) number flows commonly exceed the resolution possible even when use is made of the most advanced computer capability or most sophisticated diagnostics and physical capabilities of advanced laboratory facilities. In practice use is made of statistical flow data bases developed at the highest Re and Pe levels achievable within the currently available facility limitations. In addition, there is presently no metric to indicate whether and how much of the fully resolved physics of the flow of interest has been captured within the facilities available. In this Letter the authors develop the necessary metric criteria for homogeneous, isotropic and shear layer flows. It is based on establishing a smaller subset of the total range of dynamic scale interactions that will still faithfully reproduce all of the essential, significant, influences of the larger range of scale interactions. The work identifies a minimum significant Re and Pe level that must be obtained by DNS or experiment in order to capture all of the significant dynamic influences in data which is then scaleable to flows of interest. Hereafter this is called the minimum state. Determination of the minimum state is based on finding a minimum scale separation for the energy-containing scales of the flow and scalar fields sufficient to prevent contamination by interaction with the (non-universal) velocity dissipation and scalar diffusivity inertial range scale limits.  相似文献   

16.

The partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics as an effort to develop a prediction model for the turbulent flame lift off. The essence of the flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of the quenching holes initially created by the local quenching events. The numerical simulation for the flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for a constant-density fuel–air channel mixing layer to obtain the background turbulent flow and mixing fields, from which a time series of two-dimensional scalar-dissipation-rate array is extracted. Subsequently, a Lagrangian simulation of the flame hole random walk mapping, projected to the scalar dissipation rate array, yields a temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. In particular, the probability of encountering the reacting state, while conditioned with the instantaneous scalar dissipation rate, is examined to reveal that the conditional probability has a sharp transition across the crossover scalar dissipation rate, at which the flame edge changes its direction of propagation. This statistical characteristic implies that the flame edge propagation instead of the local quenching event is the main mechanism controlling the partial quenching events in turbulent flames. In addition, the conditional probability can be approximated by a heavyside function across the crossover scalar dissipation rate.  相似文献   

17.
The effects of body force/external pressure gradient on the statistical behaviours of the reaction progress variable variance and the terms of its transport equation have been investigated for different turbulence intensities using DNS data of statistically planar flames. Since the extent of flame wrinkling increases with the strengthening of body force promoting unstable stratification, the scalar variance has been found to decrease under strong body force promoting stability. This trend is particularly strong for low turbulence intensities where the probability density function of the reaction progress variable cannot be approximated by a bimodal distribution. Therefore, an algebraic relation for the reaction progress variable variance, derived based on a presumed bimodal probability density function of reaction progress variable, cannot be used for general flow conditions. The contributions of chemical reaction and scalar dissipation rates in the scalar variance transport equation remain leading order source and sink, respectively for all cases irrespective of the strength and direction of the body force. The counter-gradient type transport is found to weaken with increasing body force magnitude when the body force is directed from the heavier unburned gas to the lighter burned gas side of the flame brush, and vice versa. Although a scalar dissipation rate-based reaction rate closure can be utilised to model the reaction rate contribution to the scalar variance transport accurately, the dissipation rate contribution due to the gradient of the Favre-averaged reaction progress variable cannot be ignored and it plays a key role for large magnitudes of body force promoting stable stratification. An algebraic closure of the scalar dissipation rate, originally proposed for high Damköhler number combustion, has been modified for the thin reaction zones regime combustion by incorporating the effects of Froude number. This model has been shown to predict the scalar dissipation rate accurately for all cases considered here.  相似文献   

18.
The statistical behaviour and closure of sub-grid scalar fluxes in the context of turbulent premixed combustion have been assessed based on an a priori analysis of a detailed chemistry Direct Numerical Simulation (DNS) database consisting of three hydrogen-air flames spanning the corrugated flamelets (CF), thin reaction zones (TRZ) and broken reaction zones (BRZ) regimes of premixed turbulent combustion. The sub-grid scalar fluxes have been extracted by explicit filtering of DNS data. It has been found that the conventional gradient hypothesis model is not appropriate for the closure of sub-grid scalar flux for any scalar in the context of a multispecies system. However, the predictions of the conventional gradient hypothesis exhibit a greater level of qualitative agreement with DNS data for the flame representing the BRZ regime. The aforementioned behaviour has been analysed in terms of the properties of the invariants of the anisotropy tensor in the Lumley triangle. The flames in the CF and TRZ regimes are characterised by a pronounced two-dimensional anisotropy due to strong heat release whereas a three-dimensional and more isotropic behaviour is observed for the flame located in the BRZ regime. Two sub-grid scalar flux models which are capable of predicting counter-gradient transport have been considered for a priori DNS assessment of multispecies systems and have been analysed in terms of both qualitative and quantitative agreements. By combining the latter two sub-grid scalar flux closures, a new modelling strategy is suggested where one model is responsible for properly predicting the conditional mean accurately and the other model is responsible for the correlations between model and unclosed term. Detailed physical explanations for the observed behaviour and an assessment of existing modelling assumptions have been provided. Finally, the classical Bray–Moss–Libby theory for the scalar flux closure has been extended to address multispecies transport in the context of large eddy simulations.  相似文献   

19.
ABSTRACT

We develop a theory for the cascade mixing terms in a moment closure approach to binary active scalar mixing in variable-density turbulence. To address the variable-density complications we apply, as a principle and constraint, the conservation of the probability density function (PDF) through a Fokker–Planck equation with bounded sample space whose attractor is the beta PDF with skewness. Mixing is related to a single-point PDF as a realisability principle to provide mathematically rigorous expressions for the small scale statistics in terms of largescale moments. The problem of the unknown small-scale mixing is replaced with the determination of the drift and diffusion terms of a Fokker–Planck equation in a beta-PDF-convergent stochastic process. We find that realisability of a beta-convergent process requires the mixing time-scale ratio, taken as a constant in passive scalar mixing, to be a function of the mean mass fraction, mean fluid density, the Atwood number, the density-volume correlation and moments of the density field. We develop and compare the new model with direct numerical simulations data of non-stationary homogeneous variable-density turbulence.  相似文献   

20.
A necessary condition for the accurate prediction of turbulent flows using large-eddy simulation (LES) is the correct representation of energy transfer between the different scales of turbulence in the LES. For scalar turbulence, transfer of energy between turbulent length scales is described by a transport equation for the second moment of the scalar increment. For homogeneous isotropic turbulence, the underlying equation is the well-known Yaglom equation. In the present work, we study the turbulent mixing of a passive scalar with an imposed mean gradient by homogeneous isotropic turbulence. Both direct numerical simulations (DNS) and LES are performed for this configuration at various Schmidt numbers, ranging from 0.11 to 5.56. As the assumptions made in the derivation of the Yaglom equation are violated for the case considered here, a generalised Yaglom equation accounting for anisotropic effects, induced by the mean gradient, is derived in this work. This equation can be interpreted as a scale-by-scale energy-budget equation, as it relates at a certain scale r terms representing the production, turbulent transport, diffusive transport and dissipation of scalar energy. The equation is evaluated for the conducted DNS, followed by a discussion of physical effects present at different scales for various Schmidt numbers. For an analysis of the energy transfer in LES, a generalised Yaglom equation for the second moment of the filtered scalar increment is derived. In this equation, new terms appear due to the interaction between resolved and unresolved scales. In an a-priori test, this filtered energy-budget equation is evaluated by means of explicitly filtered DNS data. In addition, LES calculations of the same configuration are performed, and the energy budget as well as the different terms are thereby analysed in an a-posteriori test. It is shown that LES using an eddy viscosity model is able to fulfil the generalised filtered Yaglom equation for the present configuration. Further, the dependence of the terms appearing in the filtered energy-budget equation on varying Schmidt numbers is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号