首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
网络交通流动态演化的混沌现象及其控制   总被引:1,自引:0,他引:1       下载免费PDF全文
刘诗序  关宏志  严海 《物理学报》2012,61(9):90506-090506
本文以含2条平行路径的交通网络为例, 探讨了网络交通流逐日动态演化问题. 首先, 建立了动态系统模型来刻画网络交通流的演化过程, 动态系统模型的不动点就是随机用户平衡解, 证明了平衡解存在且唯一. 然后, 根据非线性动力学理论, 推导出了网络交通流演化的稳定性条件. 其次, 通过数值实验, 分析了网络交通流的演化特征, 发现了在一定条件下流量的周期振荡和混沌现象. 最后, 以OD需求为控制变量推导出了网络交通流混沌控制的方法.  相似文献   

2.
In this work we derive an exact, closed set of evolution equations for general continuous stochastic fields described by a Stochastic Partial Differential Equation (SPDE). By hypothesizing a decomposition of the solution field into a mean and stochastic dynamical component, we derive a system of field equations consisting of a Partial Differential Equation (PDE) for the mean field, a family of PDEs for the orthonormal basis that describe the stochastic subspace where the stochasticity ‘lives’ as well as a system of Stochastic Differential Equations that defines how the stochasticity evolves in the time varying stochastic subspace. These new evolution equations are derived directly from the original SPDE, using nothing more than a dynamically orthogonal condition on the representation of the solution. If additional restrictions are assumed on the form of the representation, we recover both the Proper Orthogonal Decomposition equations and the generalized Polynomial Chaos equations. We apply this novel methodology to two cases of two-dimensional viscous fluid flows described by the Navier–Stokes equations and we compare our results with Monte Carlo simulations.  相似文献   

3.
In the present paper we give a brief summary of some recent theoretical advances in the treatment of inhomogeneous fluids and methods which have applications in the study of dynamical properties of liquids in situations of extreme confinement, such as nanopores, nanodevices, etc. The approach obtained by combining kinetic and density functional methods is microscopic, fully self-consistent and allows to determine both configurational and flow properties of dense fluids. The theory predicts the correct hydrodynamic behavior and provides a practical and numerical tool to determine how the transport properties are modified when the length scales of the confining channels are comparable with the size of the molecules. The applications range from the dynamics of simple fluids under confinement, to that of neutral binary mixtures and electrolytes where the theory in the limit of slow gradients reproduces the known phenomenological equations such as the Planck-Nernst-Poisson and the Smolochowski equations. The approach here illustrated allows for fast numerical solution of the evolution equations for the one-particle phase-space distributions by means of the weighted density lattice Boltzmann method and is particularly useful when one considers flows in complex geometries.  相似文献   

4.
We suggest a new paradigm for intelligent decision-making suitable for dynamical sequential activity of animals or artificial autonomous devices that depends on the characteristics of the internal and external world. To do it we introduce a new class of dynamical models that are described by ordinary differential equations with a finite number of possibilities at the decision points, and also include rules solving this uncertainty. Our approach is based on the competition between possible cognitive states using their stable transient dynamics. The model controls the order of choosing successive steps of a sequential activity according to the environment and decision-making criteria. Two strategies (high-risk and risk-aversion conditions) that move the system out of an erratic environment are analyzed.  相似文献   

5.
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.  相似文献   

6.
《Physics letters. A》2002,306(1):45-51
By generalization of the Kawasaki–Ohta equation representing the interface dynamics, we report formulation of equations, which express mass transports, deterministic and stochastic, for nonlinear lattices. The equations are written characteristically by flow variable representations defined in the Letter. We found that the KdV equation and the Burgers equation, formulated by the flow variables, express mass transports in hydrodynamics and in stochastic processes, respectively. The representations lead to the conclusion that in nonequilibria we should observe a change not in a concentration but in concentration flows.  相似文献   

7.
We investigate nonlinear phenomena in dispersed two-phase systems under creeping-flow conditions. We consider nonlinear evolution of a single deformed drop and collective dynamics of arrays of hydrodynamically coupled particles. To explore physical mechanisms of system instabilities, chaotic drop evolution, and structural transitions in particle arrays we use simple models, such as small-deformation equations and effective-medium theory. We find numerical and analytical solutions of the simplified governing equations. The small-deformation equations for drop dynamics are analyzed using results of dynamical systems theory. Our investigations shed new light on the dynamics of complex fluids, where the nonlinearity often stems from the evolving boundary conditions in Stokes flow.  相似文献   

8.
9.
Superpersistent chaotic transients are characterized by an exponential-like scaling law for their lifetimes where the exponent in the exponential dependence diverges as a parameter approaches a critical value. So far this type of transient chaos has been illustrated exclusively in the phase space of dynamical systems. Here we report the phenomenon of noise-induced superpersistent transients in physical space and explain the associated scaling law based on the solutions to a class of stochastic differential equations. The context of our study is advective dynamics of inertial particles in open chaotic flows. Our finding makes direct experimental observation of superpersistent chaotic transients feasible. It also has implications to problems of current concern such as the transport and trapping of chemically or biologically active particles in large-scale flows.  相似文献   

10.
We extend techniques developed for the study of turbulent fluid flows to the statistical study of the dynamics of differential delay equations. Because the phase spaces of differential delay equations are infinite dimensional, phase-space densities for these systems are functionals. We derive a Hopf-like functional differential equation governing the evolution of these densities. The functional differential equation is reduced to an infinite chain of linear partial differential equations using perturbation theory. A necessary condition for a measure to be invariant under the action of a nonlinear differential delay equation is given. Finally, we show that the evolution equation for the density functional is the Fourier transform of the infinite-dimensional version of the Kramers-Moyal expansion.  相似文献   

11.
The main goal of filtering is to obtain, recursively in time, good estimates of the state of a stochastic dynamical system based on noisy partial observations of the same. In settings where the signal/observation dynamics are significantly nonlinear or the noise intensities are high, an extended Kalman filter (EKF), which is essentially a first order approximation to an infinite dimensional problem, can perform quite poorly: it may require very frequent re-initializations and in some situations may even diverge. The theory of nonlinear filtering addresses these difficulties by considering the evolution of the conditional distribution of the state of the system given all the available observations, in the space of probability measures. We survey a variety of numerical schemes that have been developed in the literature for approximating the conditional distribution described by such stochastic evolution equations; with a special emphasis on an important family of schemes known as the particle filters. A numerical study is presented to illustrate that in settings where the signal/observation dynamics are non linear a suitably chosen nonlinear scheme can drastically outperform the extended Kalman filter.  相似文献   

12.
We investigate the time-dependent flow of water around a solid triangular profile oscillating horizontally in a narrow rectangular container. The flow is quasi two-dimensional and using particle image velocimetry we measure 20 snapshots of the entire velocity field during a period of oscillation. From the velocity measurements we obtain the circulation of the vortices and study the vortex dynamics. The time-dependence of the flow gives rise to the formation of a jet-like flow structure which enhances the vorticity production compared to the time-independent case. We introduce a simple phenomenological model to describe the important dynamical parameters of the flow, i.e., the vortex circulation and the jet velocity. We solve the model analytically without viscous damping and find good agreement between the model predictions and our measurements. Our work adds to the recent effort to understand more complicated flows past sand-ripples and insect wings.Received: 6 January 2004, Published online: 20 April 2004PACS: 47.32.Cc Vortex dynamics - 47.32.Ff Separated flows  相似文献   

13.
G. Costanza 《Physica A》2009,388(13):2600-2622
The continuum evolution equations are derived from updating rules for three classes of stochastic models. The first class corresponds to models whose stochastic continuum equations are of the Langevin type obtained after carrying out a “local average” known as coarse-graining. The second class consists of a hierarchy of continuum equations for the correlations of the dynamical variables obtained after making an average over realizations. This average generates a hierarchy of deterministic partial differential equations except when the dynamical variables do not depend on the values of the neighboring dynamical variables, in which case a hierarchy of ordinary differential equations is obtained. The third class of evolution equations for the correlations of the dynamical variable constitutes another hierarchy after calculating an average over both realizations and all the sites of the lattice. This double average generates a hierarchy of deterministic ordinary differential equations. The second and third classes of equations are truncated using a mean field (m,n)-closure approximation in order to obtain a finite set of equations. Illustrative examples of every class are given.  相似文献   

14.
Stochastic approaches to complex dynamical systems have recently provided broader insights into spatial-temporal aspects of epileptic brain dynamics. Stochastic qualifiers based on higher-order Kramers-Moyal coefficients derived directly from time series data indicate improved differentiability between physiological and pathophysiological brain dynamics. It remains unclear, however, to what extent stochastic qualifiers of brain dynamics are affected by other endogenous and/or exogenous influencing factors. Addressing this issue, we investigate multi-day, multi-channel electroencephalographic recordings from a subject with epilepsy. We apply a recently proposed criterion to differentiate between Langevin-type and jump-diffusion processes and observe the type of process most qualified to describe brain dynamics to change with time. Stochastic qualifiers of brain dynamics are strongly affected by endogenous and exogenous rhythms acting on various time scales—ranging from hours to days. Such influences would need to be taken into account when constructing evolution equations for the epileptic brain or other complex dynamical systems subject to external forcings.  相似文献   

15.
In this paper we consider gradient structures in the dynamics and geometry of the asymmetri nonperiodic tridiagonal and full Toda flow equations. We compare and contrast a number of formulations of the nonperiodic Toda equations. In the case of the full Kostant (asymmetric) Toda flow we explain the role of noncommutative integrability in its qualitative behavior. We describe the relationship between the asymmetric Toda flows and the symmetric and indefinite Toda flows, and prove in particular that one may conjugate from the full Kostant Toda flows to the full symmetric Toda flows via a Poisson map.  相似文献   

16.
We illustrate recent developments of dynamical meteorology and climate studies that have been approached by means of stochastic differential equations. In particular, we present stochastic dynamics reasoning in climate theory, wave excitation and dynamic initialization of meteorological fields. A few possible future developments are also indicated.  相似文献   

17.
18.
In this paper, we formulate limit Zeno dynamics of general open systems as the adiabatic elimination of fast components. We are able to exploit previous work on adiabatic elimination of quantum stochastic models to give explicitly the conditions under which open Zeno dynamics will exist. The open systems formulation is further developed as a framework for Zeno master equations, and Zeno filtering (that is, quantum trajectories based on a limit Zeno dynamical model). We discuss several models from the point of view of quantum control. For the case of linear quantum stochastic systems, we present a condition for stability of the asymptotic Zeno dynamics.  相似文献   

19.
We study the stochastic dynamics of an ensemble of N globally coupled excitable elements. Each element is modeled by a FitzHugh-Nagumo oscillator and is disturbed by independent Gaussian noise. In simulations of the Langevin dynamics we characterize the collective behavior of the ensemble in terms of its mean field and show that with the increase of noise the mean field displays a transition from a steady equilibrium to global oscillations and then, for sufficiently large noise, back to another equilibrium. In the course of this transition diverse regimes of collective dynamics ranging from periodic subthreshold oscillations to large-amplitude oscillations and chaos are observed. In order to understand the details and mechanisms of these noise-induced dynamics we consider the thermodynamic limit N-->infinity of the ensemble, and derive the cumulant expansion describing temporal evolution of the mean field fluctuations. In Gaussian approximation this allows us to perform the bifurcation analysis; its results are in good qualitative agreement with dynamical scenarios observed in the stochastic simulations of large ensembles.  相似文献   

20.
In this paper, we consider the global well-posedness and long-time dynamics for the three-dimensional viscous primitive equations describing the large-scale oceanic motion under a random forcing, which is an additive white in time noise. We firstly prove the existence and uniqueness of global strong solutions to the initial boundary value problem for the stochastic primitive equations. Subsequently, by studying the asymptotic behavior of strong solutions, we obtain the existence of random attractors for the corresponding random dynamical system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号