首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this paper is to discuss the homotopy properties of locally well-behaved spaces. First, we state a nerve theorem. It gives sufficient conditions under which there is a weak n-equivalence between the nerve of a good cover and its underlying space. Then we conclude that for any (n−1)-connected, locally (n−1)-connected compact metric space X which is also n-semilocally simply connected, the nth homotopy group of X, πn(X), is finitely presented. This result allows us to provide a new proof for a generalization of Shelah?s theorem (Shelah, 1988 [18]) to higher homotopy groups (Ghane and Hamed, 2009 [8]). Also, we clarify the relationship between two homotopy properties of a topological space X, the property of being n-homotopically Hausdorff and the property of being n-semilocally simply connected. Further, we give a way to recognize a nullhomotopic 2-loop in 2-dimensional spaces. This result will involve the concept of generalized dendrite which introduce here. Finally, we prove that each 2-loop is homotopic to a reduced 2-loop.  相似文献   

2.
3.
We present a new approach to simple homotopy theory of polyhedra using finite topological spaces. We define the concept of collapse of a finite space and prove that this new notion corresponds exactly to the concept of a simplicial collapse. More precisely, we show that a collapse XY of finite spaces induces a simplicial collapse K(X)↘K(Y) of their associated simplicial complexes. Moreover, a simplicial collapse KL induces a collapse X(K)↘X(L) of the associated finite spaces. This establishes a one-to-one correspondence between simple homotopy types of finite simplicial complexes and simple equivalence classes of finite spaces. We also prove a similar result for maps: We give a complete characterization of the class of maps between finite spaces which induce simple homotopy equivalences between the associated polyhedra. This class describes all maps coming from simple homotopy equivalences at the level of complexes. The advantage of this theory is that the elementary move of finite spaces is much simpler than the elementary move of simplicial complexes: It consists of removing (or adding) just a single point of the space.  相似文献   

4.
It is known algebraically that any abelian group is a direct sum of a divisible group and a reduced group (see Theorem 21.3 of [L. Fuchs, Infinite Abelian Groups, vol. I, Academic Press, New York-London, 1970]). In this paper, conditions to split off rational parts in homotopy types from a given space are studied in terms of a variant of Hurewicz map, say and generalised Gottlieb groups. This yields decomposition theorems on rational homotopy types of Hopf spaces, T-spaces and Gottlieb spaces, which has been known in various situations, especially for spaces with finiteness conditions.  相似文献   

5.
Assaf Libman 《Topology》2003,42(3):555-568
For a coaugmented functor J on spaces, we consider J-modules and finite J-limits. The former are spaces X which are retracts of JX via the natural map. The latter are homotopy limits of J-modules arranged in diagrams whose shape is finite dimensional. Familiar examples are generalised Eilenberg MacLane spaces, which are the SP-modules. Finite SP-limits are nilpotent spaces with a very strong finiteness property. We show that the cofacial Bousfield-Kan construction of the functors Jn is universal for finite J-limits in the sense that every map XY where Y is a finite J-limit, factors through such natural map XJnX, for some n<∞.  相似文献   

6.
In the category of pointed topological spaces, let F be the homotopy fibre of the pinching map X?∪?CA?→?X?∪?CA?/?X from the mapping cone on a cofibration A?→?X onto the suspension of A. Gray (Proc Lond Math Soc (3) 26:497–520, 1973) proved that F is weakly homotopy equivalent to the reduced product (X, A). In this paper we prove an analogue of this phenomenon in a model category, under suitable conditions including a cube axiom.  相似文献   

7.
A simply connected topological space X has homotopy Lie algebra π(ΩX)⊗Q. Following Quillen, there is a connected differential graded free Lie algebra (dgL) called a Lie model, which determines the rational homotopy type of X, and whose homology is isomorphic to the homotopy Lie algebra. We show that such a Lie model can be replaced with one that has a special property that we call being separated. The homology of a separated dgL has a particular form which lends itself to calculations.  相似文献   

8.
In this paper, we establish some relationships between the topological complexity of a space X and the category of ${C_{\Delta_X}}$ , the homotopy cofibre of the diagonal map ${\Delta _X : X\rightarrow X\times X}$ . In particular, we prove the equality of the two invariants for several classes of spaces including the spheres, the H-spaces, the real and complex projective spaces and almost all (standard) lens spaces.  相似文献   

9.
The aim of this paper is to prove that the homotopy type of any bisimplicial set X is modelled by the simplicial set , the bar construction on X. We stress the interest of this result by showing two relevant theorems which now become simple instances of it; namely, the Homotopy colimit theorem of Thomason, for diagrams of small categories, and the generalized Eilenberg-Zilber theorem of Dold-Puppe for bisimplicial Abelian groups. Among other applications, we give an algebraic model for the homotopy theory of (not necessarily path-connected) spaces whose homotopy groups vanish in degree 4 and higher.  相似文献   

10.
In this paper, for any reduced Abelian group A whose torsion-free rank is infinite, we construct a countable set A(A) of Abelian groups connected with the group A in a definite way and such that for any two different groups B and C from the set A(A) the groups B and C are isomorphic but Hom(B,X) ? Hom(C,X) for any Abelian group X. The construction of such a set of Abelian groups is closely connected with Problem 34 from L. Fuchs’ book “Infinite Abelian Groups,” Vol. 1.  相似文献   

11.
We generalise some results of R. E. Stong concerning finite spaces to wider subclasses of Alexandroff spaces. In particular, we characterize pairs of spaces X,Y such that the compact-open topology on C(X,Y) is Alexandroff, give a homotopy type classification of a class of infinite Alexandroff spaces and prove some results concerning cores of locally finite spaces. We also discuss a mistake found in an article of F.G. Arenas. Since the category of T 0 Alexandroff spaces is equivalent to the category of posets, our results may lead to a deeper understanding of the notion of a core of an infinite poset.  相似文献   

12.
It is shown that a continuous map defined on a closed zero-dimensional subspace S of a compact space T into a Peano space X can be continuously extended over T or, equivalently, X is an AE(0, ∞),and this property precisely characterizes Peano spaces within the class of compact metric spaces. Surjectively, a compact AE(0, ∞) of arbitrary weight is proved to be the continuous image of a Tychonoff cube by a map satisfying the zero-dimensional lifting property.  相似文献   

13.
Homotopy classes of mappings of a space X to the circle T form an Abelian group B(X) (the Bruschlinsky group). If a: XT is a continuous mapping, then [a] denotes the homotopy class of a, and I r (a): (X × T) r → \mathbbZ \mathbb{Z} is the indicator function of the rth Cartesian power of the graph of a. Let C be an Abelian group and let f: B(X) → C be a mapping. By definition, f has order not greater than r if the correspondence I r (a) → f([a]) extends to a (partly defined) homomorphism from the Abelian group of Z-valued functions on (X × T) r to C. It is proved that the order of f equals the algebraic degree of f. (A mapping between Abelian groups has degree at most r if all of its finite differences of order r +1 vanish.) Bibliography: 2 titles.  相似文献   

14.
A space (X, T) is called I-Lindelöf [1] if every cover A of X by regular closed subsets of the space (X, T) contains a countable subfamily A′ such that X = ∪{int (A): AA′}. In this work we introduce the class of I-Lindelöf sets as a proper subclass of rc-Lindelöf sets [3]. We study various properties of I-Lindelöf sets and investigate the relationship between I-Lindelöf sets and I-Lindelöf subspaces. We give a new characterization of I-Lindelöf spaces in terms of this type of sets. Also, we study spaces (X, T) in which every I-Lindelöf set in (X, T) is closed.  相似文献   

15.
Suppose (B,β) is an operator ideal, and A is a linear space of operators between Banach spaces X and Y. Modifying the classical notion of hyperreflexivity, we say that A is called B-hyperreflexive if there exists a constant C such that, for any TB(X,Y) with α=supβ(qTi)<∞ (the supremum runs over all isometric embeddings i into X, and all quotient maps of Y, satisfying qAi=0), there exists aA, for which β(Ta)?Cα. In this paper, we give examples of B-hyperreflexive spaces, as well as of spaces failing this property. In the last section, we apply SE-hyperreflexivity of operator algebras (SE is a regular symmetrically normed operator ideal) to constructing operator spaces with prescribed families of completely bounded maps.  相似文献   

16.
In a previous paper the author has associated with every inverse system of compact Hausdorff spaces X with limit X and every simplicial complex K (possibly infinite) with geometric realization P=|K| a resolution RK(X) of X×P, which consists of paracompact spaces. If X consists of compact polyhedra, then RK(X) consists of spaces having the homotopy type of polyhedra. In the present paper it is proved that this construction is functorial. One of the consequences is the existence of a functor from the strong shape category of compact Hausdorff spaces X to the shape category of spaces, which maps X to the Cartesian product X×P. Another consequence is the theorem which asserts that, for compact Hausdorff spaces X, X, such that X is strong shape dominated by X and the Cartesian product X×P is a direct product in Sh(Top), then also X×P is a direct product in the shape category Sh(Top).  相似文献   

17.
In 2003 the author has associated with every cofinite inverse system of compact Hausdorff spaces X with limit X and every simplicial complex K (possibly infinite) with geometric realization P=|K| a resolution R(X,K) of X×P, which consists of paracompact spaces. If X consists of compact polyhedra, then R(X,K) consists of spaces having the homotopy type of polyhedra. In a subsequent paper, published in 2007, the author proved that R(X,K) is a covariant functor in the first variable. In the present paper it is proved that R(X,K) is a covariant functor also in the second variable.  相似文献   

18.
19.
Let G be a topological group with the identity element e. Given a space X, we denote by Cp(X,G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence, and we say that X is: (a) G-regular if, for each closed set FX and every point xX?F, there exist fCp(X,G) and gG?{e} such that f(x)=g and f(F)⊆{e}; (b) G?-regular provided that there exists gG?{e} such that, for each closed set FX and every point xX?F, one can find fCp(X,G) with f(x)=g and f(F)⊆{e}. Spaces X and Y are G-equivalent provided that the topological groups Cp(X,G) and Cp(Y,G) are topologically isomorphic.We investigate which topological properties are preserved by G-equivalence, with a special emphasis being placed on characterizing topological properties of X in terms of those of Cp(X,G). Since R-equivalence coincides with l-equivalence, this line of research “includes” major topics of the classical Cp-theory of Arhangel'ski? as a particular case (when G=R).We introduce a new class of TAP groups that contains all groups having no small subgroups (NSS groups). We prove that: (i) for a given NSS group G, a G-regular space X is pseudocompact if and only if Cp(X,G) is TAP, and (ii) for a metrizable NSS group G, a G?-regular space X is compact if and only if Cp(X,G) is a TAP group of countable tightness. In particular, a Tychonoff space X is pseudocompact (compact) if and only if Cp(X,R) is a TAP group (of countable tightness). Demonstrating the limits of the result in (i), we give an example of a precompact TAP group G and a G-regular countably compact space X such that Cp(X,G) is not TAP.We show that Tychonoff spaces X and Y are T-equivalent if and only if their free precompact Abelian groups are topologically isomorphic, where T stays for the quotient group R/Z. As a corollary, we obtain that T-equivalence implies G-equivalence for every Abelian precompact group G. We establish that T-equivalence preserves the following topological properties: compactness, pseudocompactness, σ-compactness, the property of being a Lindelöf Σ-space, the property of being a compact metrizable space, the (finite) number of connected components, connectedness, total disconnectedness. An example of R-equivalent (that is, l-equivalent) spaces that are not T-equivalent is constructed.  相似文献   

20.
Let X be a Banach space and T an m-accretive operator defined on a subset D(T) of X and taking values in 2x. For the class of spaces whose bounded closed and convex subsets have the fixed point property for nonexpansive self-mappings, it is shown here that two boundary conditions which imply existence of zeroes for T, appear to be equivalent. This fact is then used to prove that if there exists x0?D(T) and a bounded open neighborhood U of x0, such that ¦T(x0)¦ < r ? ¦T(x)¦ for all x??UD(T), then the open ball B(0; r) is contained in the range of T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号