首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic rheological behavior of high density polyethylene (HDPE)/ultrahigh molecular weight polyethylene (UHMWPE) blends, low density polyethylene (LDPE)/UHMWPE blends and linear low density polyethylene (LLDPE)/ UHMWPE blends was measured in parallel plate rheometer at 200°C. The analysis of log-additivity rule, Cole-Cole plots and Han curves of the three series blends indicated that the LDPE/UHMWPE blends were miscible in the melt, while the HDPE/UHMWPE blends and LLDPE/UHMWPE blends showed phase separation. The DSC results of LLDPE/UHMWPE blends and HDPE/UHMWPE blends were consistent with the rheological properties, while for the thermal properties of LDPE/UHMWPE blends, results revealed three endothermic peaks, which indicated a liquid-solid phase separation in LDPE/UHMWPE blends.  相似文献   

2.
β-phase polyvinylidene fluoride (PVDF)–BaTiO3 nanocomposite samples have been prepared by solution mixing method. XRD data represent that the crystallinity of PVDF decreases with increase in loading level of BaTiO3 nanoparticles. DSC curve represents that the melting point of PVDF is lightly affected by loading concentration of BaTiO3. The morphology and microstructure of PVDF and PVDF embedded by BaTiO3 nanofillers were investigated by using inverted contrast microscopy (ICM) and scanning electron microscopy (SEM). FTIR interferrometry is proven that PVDF and BaTiO3 are not chemically interacting; therefore, interaction of BaTiO3 is van der Waals type of interaction. The thermally stimulated discharge current (TSDC) of PVDF and PVDF–BaTiO3 nanocomposites sample was characterized by single peak. The observed TSDC peak is discussed on the basis of dipolar and interfacial polarization.  相似文献   

3.
The 4-POBN[α-(4-pyridyl-l-oxide)-N-tert-butyl-nitrone] radical adducts of ethyl and pentyl radicals were determined by a combination of high performance liquid chromatography (HPLC) combined with electron paramagnetic resonance (EPR) with HPLC-electrospray (ESI)-mass spectrometry and HPLC-thermospray (TSP)-MS. The identifIcation of the peak corresponding to the spin-trapped radical was done by performing HPLC-EPR under the same chromatographic conditions as the HPLC-MS. The radical adducts could be determined by both techniques, even though for ESI only 12 μL/min of the total 1 mL/min HPLC flow rate could be directed into the ion source.  相似文献   

4.
To investigate the effect of surface functionality on the morphology of polymer/silica composite, poly(styrene-alt-maleic anhydride) (SMA) spheres prepared via precipitation polymerization method was employed. In water/ethanol solution, diethanolamine (DEA) was used to catalyze the hydrolysis reaction of tetraethoxysilane (TEOS), and rambutan-like poly(styrene-alt-maleic anhydride)/silica (SMA/SiO2) microspheres were synthesized through in situ sol–gel process. The obtained structure and morphology were characterized by FTIR, NMR, TEM, SEM, and TGA. The results showed that the hydrolyzed SMA chains on the surface was crucial to the nucleation and growth of silica, and the morphologies of SMA/SiO2 composite microspheres can be controlled by the amount of DEA and the ratio of SMA/TEOS. In addition, the SMA/SiO2 microspheres were used to prepare hierarchical structure of SMA/SiO2/Ag particles, which were utilized for the construction of surface-enhanced Raman scattering substrate (SERS).  相似文献   

5.
p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0~14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.  相似文献   

6.
A new nanoparticle formulation has been developed by using dimethyl-β-cyclodextrin (DM-β-CD) with raloxifene HCl or tamoxifene citrate. Both drugs are insoluble in water and represent as low bioavailibilities when given orally. Tamoxifen has an FDA approval for breast cancer prevention and the treatment. Raloxifene is approved for osteoprosis treatment. Both drugs were selected as a model drug antitumoural activity and MMP-2 inhibition studies were evaluated on breast cancer cell lines MCF-7 and MDA-MB 231. MMP-2 is known to be responsible for tumour invasion and initation the of angiogenesis. DM-β-CD and sodium taurocholate (NaTC) have been used as absorption enhancers to increase penetration effect of raloxifene/tamoxifen on the tumour cells and aimed to provide high antitumoral activity and MMP-2 inhibition results by developed nanoparticle formulations. The effects of two absorption enhancers were compared. The highest antitumoral activity was observed for DM-β-CD—raloxifene HCl nanoparticle formulation and also MMP-2 enzyme inhibit effectively.  相似文献   

7.
8.
Stereocomplex-poly(l- and d-lactide) (sc-PLA) and poly(methyl methacrylate) (PMMA) blends were prepared by solution blending at PMMA loadings from 20 to 80 mass%. The miscibility and crystallization behaviors of the blends have been studied in detail by differential scanning calorimeter. The single-glass transition temperatures (T g) of the blends demonstrated that the obtained system was miscible in the amorphous state. It was observed that the crystallization peak temperature of sc-PLA/PMMA blends was marginally lower than that of neat sc-PLA at various cooling rates, indicating the dilution effect of PMMA on the sc-PLA component to restrain the overall crystallization process. In the study of isothermal crystallization kinetics, the reciprocal value of crystallization peak time ( \( t_{\text{p}}^{ - 1} \) ) decreased with increasing PMMA content, indicating that the addition of non-crystalline PMMA inhibited the isothermal crystallization of sc-PLA at an identical crystallization temperature (T c). Moreover, the negative value of Flory–Huggins interaction parameter (χ 12 = ?0.16) of the blend further indicated that sc-PLA and PMMA formed miscible blends.  相似文献   

9.
A rigorous thermodynamic treatment appropriate for surface adsorption from mixed aqueous solution of alkali and polyprotic acid was derived. Those equations were applied to mixed aqueous solution/air systems of alkali metal hydroxide and FeIII complex with ethylenediamine- N, N, N′,N′-tetraacetate (Fe-EDTA). Surface density of each species arising from Fe-EDTA was separately evaluated, and thus, surface activity of Fe-EDTA was studied, especially its dependence on pH and how it is influenced by the counter cations. Fe-EDTA was positively adsorbed at the water/air interface at very low pHs and negatively at high pHs. The pH range of positive adsorption of Fe-EDTA with potassium ion, as a counter ion, was wider than that with sodium ion. Thus, potassium ion, a structure breaker, tended to smooth surface adsorption of Fe-EDTA at the water/air interface, whereas sodium ion, a structure maker, tended to withdraw Fe-EDTA from the interfacial region.  相似文献   

10.
In this study, Pt nanoparticles (NPs) were supported on reduced graphene oxide with the aid of disodium ethylenediamine-tetraacetate, where the Pt iona were initially attached to EDTA-functionalized graphene oxide (EDTA-GO) sheets and then the metal ion and the graphene oxide were reduced simultaneously by ethylene glycol. Electrochemical properties of the catalysts were studied by measuring cyclic voltammetries, and functional groups of the synthesized materials were investigated by Fourier transform infrared spectrometry. Average sizes and lattice parameters were measured by scanning electron microscopy, transmission electron microscopy images, and X-ray diffraction. The results showed that Pt NPs were successfully deposited on the EDTA-GO with the crystallite size of about 2.3 nm. The prepared catalysts demonstrated an enhanced tolerance towards CO poisoning, when EDTA-GO was used as supports. This suggests that EDTA plays a crucial role in the dispersion and electrocatalytic activity of the metal nanoparticles.  相似文献   

11.
MicroRNAs (miRNAs), a class of small endogenous nonprotein-coding RNAs, regulate a wide range of biological processes, and their abnormal expressions are related to the growth and development of plants. Thus, a simple, rapid, and highly sensitive assay for miRNA detection is of great significance. In this work, a label-free and ultrasensitive assay for miRNA detection using protein cage nanoparticles has been developed. Apoferritin-encapsulated Cu nanoparticles (Cu-apoferritin) could be immobilized on the electrode through special reaction between amino and carboxyl. Hybridization event between the probe DNA and the target miRNA-159a is confirmed by electrochemical oxidation signal after Cu released into the detection buffer by adjusting the pH. This assay is highly selective and sensitive with a low detection limit of 3.5 fM. Moreover, the developed method can even discriminate single-base mismatched strand between the complementary targets. The effect of abscisic acid on the expression level of miRNA-159a in Arabidopsis thaliana seeds was also investigated.  相似文献   

12.
A novel direct method for the determination of EDTA in alkaline radioactive evaporator residue solution was developed and validated based on ion chromatography with suppressed conductimetric detection and anion exchange columns (A Supp 4, 4 mm × 250 mm and A Supp 5, 4 mm × 150 mm). The yttrium-EDTA complex resulted one single chromatographic peak in the eluent and allowed the correct determination of EDTA in an alkaline, high concentration radioactive waste water. Depending on coexisting substances, suitable eluent is 10.0 mM carbonate buffer/pH 10.6 or 10.75 (t R,Y–EDTA = 7.01 and 6.4 min, respectively). For 10.0 mM carbonate buffer/pH 10.6 and isocratic flow rate of 1.0 cm3/min, a linear calibration curve was obtained from 5 to 40 mg/dm3 (r > 0.999) EDTA. Good resolution was achieved from commonly coexisting anions (chloride, nitrite, nitrate, sulphate, phosphate, bromide and citrate). The developed simple ion chromatographic method was applied for the assay of EDTA in various radioactive alkaline solutions.  相似文献   

13.
Collagen/cellulose blended solutions with collagen/cellulose mass ratio (Col/Cel) of 0, 1/40, 1/20, 1/10 and 1/5 were prepared using [Emim]Ac as solvent. The interactions between the two polymers before and after regeneration were investigated. In steady shear flow, all of the experimental viscosity values were greater than those of the estimated values calculated from the log-additivity rule for each sample, suggesting interactions between the two polymers in solutions. All solutions exhibited shear thinning behavior and the flow curves could be described by Cross model. Zero shear viscosity (η 0) versus Col/Cel was examined and a linear increase (from 8.73 to 16.39 Pa·s) can be observed for η 0 as Col/Cel ≤ 1/10, while there was only a slight increase (from 16.39 to 18.42 Pa·s) in η 0 as Col/Cel increased to 1/5. Dynamic rheology results suggested the existence of aggregates in solution with Col/Cel = 1/10. Furthermore, the activation energy of solution was 84.5 kJ mol?1 as Col/Cel = 1/10, higher than that of cellulose solution (44.2 kJ mol?1). Regenerated films were prepared and characterized to trace back the interactions between the two polymers in [Emim]Ac. Fourier transform infrared spectroscopy indicated the hydrogen-bond interaction between collagen and cellulose in films. The denaturation temperature of collagen in films with Col/Cel ≤ 1/10 could be improved, but it was decreased with the increase of collagen content, and finally was reduced to be close to that of collagen as Col/Cel = 1/5. The features of dynamic mechanical analysis for films were indicative of the lack of homogeneity between collagen and cellulose as Col/Cel = 1/5. Atomic force microscopy images further confirmed the phase-separation when Col/Cel = 1/5.  相似文献   

14.
Poly(p-chloromethyl styrene)-graft-poly(methyl methacrylate) (PCMS-g-PMMA) and poly(p-chloromethyl styrene)-graft-poly(benzyl methacrylate) (PCMS-g-PBzMA) graft copolymers with asymmetric branches are synthesized via the combination of cationic polymerization and atom transfer radical polymerization (ATRP). The process involves first, the preparation of poly(p-chloromethyl styrene) (PCMS-CH2Cl) macroinitiator without any cross-linking or side reactions through pendant benzyl chloride (?CH2Cl) functionality by cationic polymerization using a simple FeCl3-based initiating system at 25 °C. The as-synthesized PCMS-CH2Cl, without any transformation, is then used as the macroinitiator to graft PMMA and PBzMA branches by ATRP to produce PCMS-g-PMMA and PCMS-g-PBzMA graft copolymers of varying compositions with controlled molecular weight and moderately narrow polydispersities (M w/M n?≤?1.32). The resulting PCMS21 -g-PMMA232 graft copolymer in thin film form phase separates into spherical morphology with an average diameter of 170?±?72 nm. Whereas the PCMS21 -g-PBzMA156 graft copolymer gives worm-like nanostructures with an average length of 94 nm and width of 31 nm due to phase separation as visualized through atomic force microscopy. On the other hand, the phase-separated morphology is not very well-defined for other graft copolymers (PCMS113 -g-PMMA227 and PCMS113 -g-PBzMA154) thin films containing longer PCMS chains. This approach represents a rapid and convenient route to prepare unique spherical/worm-like polymer nanostructures. Figure
Well-defined poly(p-chloromethyl styrene)-graft-poly(methyl methacrylate) (PCMS-g-PMMA) and poly(p-chloromethyl styrene)-graft-poly(benzyl methacrylate) (PCMS-g-PBzMA) graft copolymers with asymmetric branches are synthesized by the combination of living cationic polymerization and atom transfer radical polymerization (ATRP). The resulting PCMS21 -g-PMMA232 and PCMS21 -g-PBzMA156 graft copolymers phase separate into nanostructured spherical and worm-like morphologies, respectively, in thin film form. The phase-separated morphology is not very well-defined for graft copolymers (PCMS113 -g-PMMA227 and PCMS113 -g-PBzMA154) thin films containing longer PCMS chains.  相似文献   

15.
The utility of RAPD markers in assessing genetic diversity and phenetic relationships of six different species of Piper from Northeast India was investigated. Polymerase chain reaction (PCR) with four arbitrary 10-mer oligonucleotide primers applied to the six species produced a total of 195 marker bands, of which, 159 were polymorphic. On average, six RAPD fragments were amplified per reaction. In the UPGMA phenetic dendrogram based on Jaccard’s coefficient, the different accessions of Piper showed a high level of genetic variation. This study may be useful in identifying diverse genetic stocks of Piper, which may then be conserved on a priority basis.  相似文献   

16.
The ability of MALDI TOF MS (matrix-assisted laser desorption ionisation time-of-flight mass spectrometry) to identify cultivable microflora from two waste disposal sites from non-ferrous metal industry was analysed. Despite the harsh conditions (extreme pH values and heavy metal content in red mud disposal site from aluminium production or high heavy metal content in nickel sludge), relatively high numbers of bacteria were recovered. In both environments, the bacterial community was dominated by Gram-positive bacteria, especially by actinobacteria. High-quality MALDI TOF mass spectra were obtained but most of the bacteria isolates could be not identified using MALDI Biotyper software. The overall identification rate was lower than 20 %; in two of the environments tested identification rates were lower than 10 %. As a dominant bacterial species, Microbacterium spp. in drainage water from an aluminium red mud disposal site near ?iar nad Hronom, Bacillus spp. in red mud samples from the same site, and Arthrobacter spp. from nickel smelter sludge near Sereï were identified by a combination of the Biolog system and 16S rRNA sequence analysis. As the primary focus of the MALDI TOF MS-based methodology is directed towards medically important bacteria, reference database spectra expansion and refinement are needed to improve the ability of MALDI TOF MS to identify environmental bacteria, especially those from extreme environments.  相似文献   

17.
Spectrophotometric studies have revealed that ozone oxidizes Cr(III) into Cr(VI), Fe(III) into Fe(VI), Mn(VI) into Mn(VII), and Np(VI) into Np(VII) in the concentrated aqueous silicate solutions. Cr(III) oxidation is accelerated in alkaline-silicate and alkaline solutions as compared to neutral silicate solution. Ferrate and permanganate ions are unstable in Na2SiO3 solutions (0.5–1.3 mol/L of the silicate). Neptunium(VII) ions formed in the course of ozonation are stable in Na2SiO3 solution (1 mol/L) upon drying in air to form solid vitreous mass.  相似文献   

18.
Poly(γ-glutamic acid) (γ-PGA) has been widely used in many applications due to its excellent biodegradability, biocompatibility, and nontoxic properties. In this study, we synthesized a novel photo-sensitive amphiphilic poly(γ-glutamic acid)-graft-7-amino-4-methylcoumarin (AMC-γ-PGA) copolymer, which can self-assemble into nanoparticles (NPs) via solvent exchange method. The resultant AMC-γ-PGA NPs showed sensitivity to UV irradiation, pH, and ionic strength, owing to the presence of coumarin groups and carboxyl groups on the AMC-γ-PGA copolymer. The AMC-γ-PGA NPs were then used as a matrix to entrap hemoglobin (Hb). The obtained Hb@AMC-γ-PGA nanocomposites were cast on the electrode to form a nanocomposite film, which was then photo-crosslinked by UV irradiation to lock and immobilize Hb. Cyclic voltammetry (CV) experiment showed that the Hb@AMC-γ-PGA-nanocomposite-modified electrode exhibited good electrochemical catalytic activity for H2O2, implying that the AMC-γ-PGA NPs provided a favorable microenvironment for Hb and preserved the bioactivity of Hb. In addition, the leakage of Hb was efficiently avoided with the photo-crosslinking of the AMC-γ-PGA NPs. The biocompatible photo-sensitive AMC-γ-PGA NPs provided an excellent platform for immobilization of Hb on electrode.  相似文献   

19.
In the development of nanoparticle-based vaccine adjuvants, the interaction between nanoparticles (NPs) and the cells is a key factor. To control them, we focused on the relationship between the hydrophobicity of the side chains and the cell membrane. In this study, amphiphilic poly(γ-glutamic acid) (γ-PGA), using various types of hydrophobic side chains, was synthesized and used to prepare NPs for evaluating the membrane disruptive activity. When leucine ethyl ester (Leu), methionine ethyl ester (Met), or tryptophan ethyl ester (Trp) was grafted, each polymer formed monodispersed NPs at physiological conditions. Significantly, NPs composed of Leu and Trp showed a membrane disruptive activity at the endosomal environment (pH 5–6.5), while NPs composed of Met did not show. This might be due to the weak hydrophobicity of Met compared to that of Leu and Trp, which demonstrated that the interaction between NPs and cells could be controlled by designing the polymer compositions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号