首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, the dynamic problem of coupled thermoelasticity with the most general type of nonuniformity and anisotropy is analyzed. The hyperbolic nature of the system of equations of coupled thermoelasticity is demonstrated, effects of extinction of separate waves by superposition of elastic and thermoelastic wave fronts are investigated, and the interrelationship of different orders of discontinuity of stresses, displacements, and temperature is determined. The case of the uncoupled problem of thermoelasticity is especially analyzed. Sufficient conditions are obtained for the dynamic density for wave processes in thermoelasticity, previously investigated for boundary value problems of hyperbolic systems of second order differential equations [1], andelastic stress waves [2] are obtained. The generally accepted system of tensor notation for the theory of thermoelasticity is used [3].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 154–163, May–June, 1981.  相似文献   

2.
半无限长压电杆的瞬态热冲击问题   总被引:3,自引:0,他引:3  
采用具有一个热松弛时间的L-S广义热弹性理论,研究了一维半无限长压电杆在一端受到热冲击时的边值问题。借助拉普拉斯正,反变换技术,在所考虑时间非常短的情况下,对问题进行了求解,得到了压电杆上的位移,压力及温度分布的近似解析解,发现应力及温度分布中分别存在两个阶跃点,并给出了算例。  相似文献   

3.
一维半无限压电杆的广义的热冲击问题   总被引:1,自引:2,他引:1  
采用具有两个热松驰时间的G-L广义热弹性理论,研究了一维无限无限长杆在其端部受到热冲击时的边值问题,借助于拉普拉斯正、反变换技术,在所考虑时间非常短的情况下,对问题进行了求解。得到了位移及温度分布的近似妥析角,发现位移及温度分布中分别存在两上阶跃点,并通过数值计算,把温度的分布规律用图形反映了出来,从温度的分布图上可以看出,当任何x的值大于第二个阶跃点的位置值时,温度值都是零,也即在当前所绘定的时刻,热以波的形式沿压电杆仅传播到第二阶跃点的位置,而在第二个阶跃点之后,压电杆上的温度分布保持初始温度;定不同时刻,热波波前的位置也将相应的在压电杆上移动,也即热波波前在压电杆上的位置随考虑时刻不同而不同,这与经典的热传导是完全不同的,它说明热是以波的形式以有限的速度,而不是以无限的速度在介质中进行传播的。  相似文献   

4.
In this paper, the induced temperature, displacement, and stress fields in an infinite transversely isotropic unbounded medium with cylindrical cavity due to a moving heat source and harmonically varying heat are investigated. This problem is solved in the context of the linear theory of generalized thermoelasticity with dual phase lag model. The governing equations are expressed in Laplace transform domain. Based on Fourier series expansion technique the inversion of Laplace transform is done numerically. The numerical estimates of the displacement, temperature and stress are obtained and presented graphically. The theories of coupled thermoelasticity, generalized thermoelasticity with one relaxation time, and thermoelasticity without energy dissipation can extracted as special cases. Some comparisons have been shown in figures to present the effect of the heat source, dual phase lags parameters and the angular frequency of thermal vibration on all the studied fields.  相似文献   

5.
In this paper, the radial deformation and the corresponding stresses in a homogeneous annular fin for an isotropic material has been investigated. A numerical technique is proposed to obtain the solution of the transient coupled thermoelasticity in an annular fin cylinder with it’s base suddenly subject to a heat flux of a decayed exponential function of time. The system of fundamental equations is solved by using an implicit finite-difference method. The present method is a second-order accurate in time and space and unconditionally stable. A numerical method is used to calculate the temperature, displacement and the components of stresses with time t and through the radial of the annular fin cylinder. The results indicate that the effect of coupled thermoelasticity on temperature, stresses and displacement is very pronounced. Comparison is made with the results predicted by the theory of thermoelasticity in the absence of coupled thermoelasticity.  相似文献   

6.
The two-dimensional problem for a half space whose surface is traction free and subjected to the effects of heat sources is considered within the context of the theory of thermoelasticity with two relaxation times. Laplace and Fourier transform techniques are used. The solution in the transformed domain is obtained by using a direct approach. Numerical inversion of both transforms is carried out to obtain the temperature, stress and displacement distributions in the physical domain. Numerical results are represented graphically and discussed.  相似文献   

7.
In this paper, we will consider a half-space filled with an elastic material, which has constant elastic parameters. The governing equations are taken in the context of the two-temperature generalized thermoelasticity theory [Youssef, H., 2005a. The dependence of the modulus of elasticity and the thermal conductivity on the reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity, J. Appl. Math. Mech., 26(4), 4827; Youssef, H., 2005b. Theory of two-temperature generalized thermoelasticity, IMA J. Appl. Math., 1–8]. The medium is assumed initially quiescent. Laplace transform and state space techniques are used to obtain the general solution for any set of boundary conditions. The general solution obtained is applied to a specific problem of a half-space subjected to thermal shock and traction free. The inverse Laplace transforms are computed numerically using a method based on Fourier expansion techniques. Some comparisons have been shown in figures to estimate the effect of the two-temperature parameter.  相似文献   

8.
The bending of the Euler-Bernoulli micro-beam has been extensively modeled based on the modified couple stress (MCS) theory. Although many models have been incorporated into the literature, there is still room for introducing an improved model in this context. In this work, we investigate the thermoelastic vibration of a micro-beam exposed to a varying temperature due to the application of the initial stress employing the MCS theory and generalized thermoelasticity. The MCS theory is used to investigate the material length scale effects. Using the Laplace transform, the temperature, deflection, displacement, flexure moment, and stress field variables of the micro-beam are derived. The effects of the temperature pulse and couple stress on the field distributions of the micro-beam are obtained numerically and graphically introduced. The numerical results indicate that the temperature pulse and couple stress have a significant effect on all field variables.  相似文献   

9.
This paper is concerned with determining the elastodynamic response of a plane strain medium containing a central crack deformed by the action of suddenly applied thermal and/or mechanical disturbances when the assumptions of the general theory of coupled thermoelasticity are assumed. Integral transform solution is employed to reduce the governing equations into integral equations of Fredholm type. A numerical inversion technique is used to compute the dynamic stress-intensity factors when the faces of the crack are subjected to constant heat flux and/or mechanical loading. Attention is focused on the overshoot in the stress-intensity factor and its time interval for non-stationary temperature fields, and to what degree it is influenced by the mutual dependence of the temperature and displacement fields inherent in the coupled theory of thermoelasticity.  相似文献   

10.
The theory of thermoelasticity based on the heat conduction equation with the Caputo time-fractional derivative of order α is used to study thermal stress in an infinite medium with a cylindrical hole. Two types of Neumann boundary conditions are considered: the constant value of the normal derivative of the temperature and constant heat flux at the surface of a cavity. The solution is obtained applying Laplace and Weber integral transforms. Numerical results are illustrated graphically.  相似文献   

11.
A model of the equations of a generalized thermoelasticity (GT) with relaxation times for a saturated porous medium is given in this article. The formulation can be applied to the GT theories: Lord–Shulman theory, Green–Lindsay theory, and Coupled theory for the porous medium. A two-dimensional thermoelastic problem that is subjected to a time-dependent thermal/mechanical source is investigated with the model of the generalized porous thermoelasticity. By using the Laplace transform and the Fourier transform technique, solutions for the displacement, temperature, pore pressure, and stresses are obtained with a semi-analytical approach in the transform domain. Numerical results are also performed for portraying the nature of variations of the field variables. In addition, comparisons are presented with the corresponding four theories.  相似文献   

12.
计及材料物性与温度的相关性,基于Clausius不等式和L-S广义热弹性理论,通过对自由能公式的高阶展开,构建了具有变物性特征的广义耦合热弹性动力学模型。推导了各向同性材料表面受热冲击问题的线性化控制方程组,利用热冲击的瞬时特征,借助于Laplace正、逆变换技术及其极限性质,给出了变物性条件下一维热冲击问题的温度场、位移场和应力场的渐近表达式。通过算例,得到了热冲击作用下各物理场的分布规律以及材料物性与温度相关性对于热弹性响应的影响规律。结果表明:材料物性与温度相关性对于各物理场的阶跃位置、阶跃间隔以及阶跃峰值均产生影响,但值得注意的是,相比于位移场和应力场的显著影响,其对温度场的影响效果并不明显。  相似文献   

13.
IntroductionSomeauthorsstudiedthecoupledfieldproblemsformicropolarcontinua .Especially ,W .Nowackipublishedaseriesofabout 4 0scientificpapersdealingwiththemicropolarthermoelasticityaswellastheproblemsofdistortion ,thermodiffusion ,thermopiezoelectricityandm…  相似文献   

14.
A first strain gradient theory of thermoelasticity is formulated employing a method due to Mindlin. The basic equations for linear dynamical thermoelasticity for infinitesimal motion are obtained and discussed. Wave propagation is considered and an example of a spherical thermal inclusion in an infinite body is solved and the corresponding displacement field and the component of stresses, couple stresses, and double stresses are obtained.  相似文献   

15.
This paper deals with the problem of thermoelastic interactions in a functionally graded isotropic unbounded medium due to the presence of periodically varying heat sources in the context of the linear theory of generalized thermoelasticity without energy dissipation (TEWOED). The governing equations of generalized thermoelasticity without energy dissipation (GN model type II) for a functionally graded materials (FGM) (i.e. material with spatially varying material properties)are established. The governing equations are expressed in Laplace–Fourier double transform domain and solved in that domain. Now, the inversion of the Fourier transform is carried out by using residual calculus, where poles of the integrand is obtained numerically in complex domain by using Laguerre’s method and the inversion of Laplace transform is done numerically using a method based on Fourier series expansion technique. The numerical estimates of the displacement, temperature, stress and strain are obtained for a hypothetical material. The solution to the analogous problem for homogeneous isotropic material is obtained by taking nonhomogeneity parameter suitably. Finally the results obtained are presented graphically to show the effect of nonhomogeneity on displacement, temperature, stress and strain.  相似文献   

16.
The aim of the present contribution is the determination of the thermoelastic temperatures, stress, displacement, and strain in an infinite isotropic elastic body with a spherical cavity in the context of the mechanism of the two-temperature generalized thermoelasticity theory (2TT). The two-temperature Lord–Shulman (2TLS) model and two-temperature dual-phase-lag (2TDP) model of thermoelasticity are combined into a unified formulation with unified parameters. The medium is assumed to be initially quiescent. The basic equations are written in the form of a vector matrix differential equation in the Laplace transform domain, which is then solved by the state-space approach. The expressions for the conductive temperature and elongation are obtained at small times. The numerical inversion of the transformed solutions is carried out by using the Fourier-series expansion technique. A comparative study is performed for the thermoelastic stresses, conductive temperature, thermodynamic temperature, displacement, and elongation computed by using the Lord–Shulman and dual-phase-lag models.  相似文献   

17.
基于带有两个热松弛时间的G-L广义热弹性理论, 利用有限元方法研究了零阻抗理想界面层合板在瞬态热冲击诱导的位移、应力和温度等通过界面时的热弹性行为. 通过比较不同层中材料的比热容、热导系数、热松弛时间和密度等对界面处的位移、应力和温度的影响, 研究了不同材料参数对复合材料热力学行为影响, 发现不同材料参数将导致热穿过界面时界面处温度、位移和应力发生突变, 研究结果可以为由热引起的层合板挠曲变形提供理论依据.   相似文献   

18.
In this paper, we will consider a half-space filled with an elastic material, which has constant elastic parameters. The governing equations are taken in a unified system from which the field equations for coupled thermoelasticity as well as for generalized thermoelasticity can be easily obtained as particular cases. A linear temperature ramping function is used to more realistically model thermal loading of the half-space surface. The medium is assumed initially quiescent. Laplace and Fourier transform techniques are used to obtain the general solution for any set of boundary conditions. The general solution obtained is applied to a specific problem of a half-space subjected to ramp-type heating. The inverse Fourier transforms are obtained analytically while the inverse Laplace transforms are computed numerically using a method based on Fourier expansion techniques. Some comparisons have been shown in figures to estimate the effect of the ramping parameter of heating with different theories of thermoelasticity.  相似文献   

19.
Abstract

Enlightened by the Caputo fractional derivative, the present study deals with a novel mathematical model of generalized thermoelasticity to investigate the transient phenomena due to the influence of magnetic field and moving heat source in a rod in the context of three-phase lag (TPL) theory of thermoelasticity. Both ends of the rod are fixed and heat insulated. Employing Laplace transform as a tool, the problem has been transformed into the space-domain and solved analytically. Finally, solutions in the real-time domain are obtained by applying the inverse Laplace transform. Numerical calculation for stress, displacement, and temperature within the rod is carried out and displayed graphically. The effect of moving heat source speed on temperature, stress, and temperature is studied. It is found from the distributions that the temperature, thermally induced displacement and stress of the rod are found to decrease at large source speed. For the better understanding of the effect of moving heat source on all the distributions, three animations are added.  相似文献   

20.
The linear theory of thermoelasticity without energy dissipation is employed to study thermoelastic interactions due to a continuous point heat source in a homogeneous and isotropic unbounded solid. The Laplace transform method is employed to solve the problem. Exact expressions, in closed form, for the displacement, temperature and stress fields are obtained. Numerical results for a copper-like material are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号