首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calculation was carried out of chemical shifts in 13C NMR spectra for a series of fluoromethanes CH n F4?n (n = 0–4) by the methods of the electron density functional theory GIAO-DFT taking in consideration the solvent effect in the framework of the polarizable continuum model Tomasi IEF-PCM. The best results were obtained at the use of Keal-Tozer KT3 functional combined with Pople standard basis sets 6-311G(d,p) and 6-311++G(d,p), and also with Jensen special set pcS-2 containing tight p-functions. The optimum reference in the calculation of chemical shifts in 13C NMR spectra for the fluoromethanes series is TMS.  相似文献   

2.
3.
Quantitative structure-spectrum relationship calculations of 13C NMR chemical shifts of both 302 carbon atoms in 56 alcohols and 62 carbon atoms in 15 thiols are described using several parameters: the atomic ionicity index (INI), the polarizability effect index (PEI), and stereoscopic effect parameters (?) of the compounds. The 13C NMR chemical shifts for these compounds of both alcohols and thiols can be estimated through the multiple linear regression (MLR). A MLR model was built with variable screening by the stepwise multiple regression and examined by validation on its stability. The correlation coefficient of the established model as well as the leave-one-out cross-validation was 0.9724 and 0.9716 respectively. The results obviously indicate that INI and ? are linearly related with 13C NMR chemical shifts, which provides a new method for calculating 13C NMR chemical shifts in the compounds of both alcohols and thiols.  相似文献   

4.
A linear scaling of the calculated chemical shifts is used in order to improve the accuracy of the DFT predicted 13C NMR chemical shifts. The widely applied method of GIAO B3LYP/6-311+G(2d,p) using the B3LYP/6-31G(d) optimized geometries is chosen, which allows cost-effective calculations of the 13C chemical shifts in the molecular systems with 100 and more atoms. A set of 27 13C NMR chemical shifts determined experimentally for 22 simple molecules with various functional groups is used in order to determine scaling factors for reproducing experimentally measured values of 13C chemical shifts. The results show that the use of a simple relationship (δscalc = 0.95 δcalc + 0.30, where δcalc and δscalc are the calculated and the linearly scaled values of the 13C chemical shifts, respectively) allows to achieve a three-fold improvement in mean absolute deviations for 27 chemical shifts considered. To test the universal applicability of the scaling factors derived, we have used complex organic molecules such as taxol and a steroid to demonstrate the significantly improved accuracy of the DFT predicted chemical shifts. This approach also outperforms the recently recommended usage of the Hartree-Fock optimized geometries for the GIAO B3LYP/6-311+G(2d,p) calculations of the 13C chemical shifts.  相似文献   

5.
Calculations of 29Si NMR chemical shifts of 68 silanes possessing various substituents, in particular, with heavy halogens attached to silicon atom, were carried out applying an efficient calculation scheme of locally dense basis set in the framework of the electron density functional theory utilizing the Keal–Tozer functional combined with relativistic Dyall basis sets on a four-component relativistic level. The main factors of calculation accuracy of silicon chemical shifts were analyzed including the relativistic effects, environmental impact, and vibrational corrections. The mean absolute calculation error for the studied compounds series accounting for all mentioned factors was 14.0 ppm for the nonrelativistic calculation and 6.7 ppm for the four-component relativistic calculation at the range of silicon chemical shifts variation of ~250 ppm.  相似文献   

6.
Systematic analysis of factors affecting the accuracy of DFT calculations of 29Si NMR chemical shifts in four-coordinate silicon compounds showed that the best agreement with the experimental values is attained using B1PW91 and PBE0 functionals in combination with the TZP basis set. In calculations of 29Si chemical shifts by quantum-chemical methods particular attention should be given to the contribution of relativistic spin-orbit interaction and conformational equilibrium.  相似文献   

7.
Comparison of experimental and theoretical (GIAO DFT) 13C NMR chemical shifts allows the reliable assignment of isomeric structures of heteroaromatic compounds. This methodology was applied to establish the structures of isomeric quinoxalines. A modern 1D NOE technique permitted independent proof of the proposed structures.  相似文献   

8.
A topological method for the calculation of13C NMR chemical shifts was developed for polychlorinated dibenzo-p-dioxins (PCDD). Based on previous results for polychlorinated benzenes and polyhydroxybenzenes, the collective influence of the substituents on carbon chemical shifts is presented as the sum of two-particle increments. The increments only of two new monosubstituted graphs have to be added to those known for PCDD spectra: 1-Cl-DD and 2-Cl-DD. All structural situations in the13C NMR chemical shifts of the whole class of 75 PCDD can be covered with a few model compounds. The coefficients of the increment scheme are independent of the change of CDCl3 for acetone-d6, so it may be a new reliable criterion for recognizing PCDD by13C NMR, in spite of the close resemblance of NMR spectra of aromatic compounds.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 280–284, February, 1995.  相似文献   

9.
Geometry optimization and GIAO (gauge including atomic orbitals) (13)C NMR chemical shift calculations at Hartree-Fock level, using the 6-31G(d) basis set, are proposed as a tool to be applied in the structural characterization of new organic compounds, thus providing useful support in the interpretation of experimental NMR data. Parameters related to linear correlation plots of computed versus experimental (13)C NMR chemical shifts for fourteen low-polar natural products, containing 10-20 carbon atoms, were employed to assess the reliability of the proposed structures. A comparison with the hybrid B3LYP method was carried out to evaluate electron correlation contributions to the calculation of (13)C NMR chemical shifts and, eventually, to extend the applicability of such computational methods to the interpretation of NMR spectra in apolar solutions. The method was tested by studying three examples of revised structure assignments, analyzing how the theoretical (13)C chemical shifts of both correct and incorrect structures matched the experimental data.  相似文献   

10.
We carried out a series of zeroth‐order regular approximation (ZORA)‐density functional theory (DFT) and ZORA‐time‐dependent (TD)‐DFT calculations for molecular geometries, NMR chemical shifts, nucleus‐independent chemical shifts (NICS), and electronic transition energies of plumbacyclopentadienylidenes stabilized by several Lewis bases, (Ph)2(tBuMe2Si)2C4PbL1L2 (L1, L2 = tetrahydrofuran, Pyridine, N‐heterocyclic carbene), and their model molecules. We mainly discussed the Lewis‐base effect on the aromaticity of these complexes. The NICS was used to examine the aromaticity. The NICS values showed that the aromaticity of these complexes increases when the donation from the Lewis bases to Pb becomes large. This trend seems to be reasonable when the 4n‐Huckel rule is applied to the fractional π‐electron number. The calculated 13C‐ and 207Pb‐NMR chemical shifts and the calculated UV transition energies reasonably reproduced the experimental trends. We found a specific relationship between the 13C‐NMR chemical shifts and the transition energies. As we expected, the relativistic effect was essential to reproduce a trend not only in the 207Pb‐NMR chemical shifts and J[Pb‐C] but also in the 13C‐NMR chemical shifts of carbons adjacent to the lead atom. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Effect of solvation on the accuracy of DFT quantum-chemical calculations of 15N NMR chemical shifts of pyrrole, N-methylpyrrole, and pyridine was studied. The use of continuum model is sufficient to obtain consistent theoretical σN values for weakly polar aprotic solvents, whereas solvation effects in strongly polar and protic solvents should be taken into account in the explicit form.  相似文献   

12.
The quantitative structure–activity relationship models of 40 phenylhydrazine-substituted tetronic acid derivatives were established between the 1H nuclear magnetic resonance (NMR) and 13C NMR chemical shifts and the antifungal activity against Fusarium graminearum, Botrytis cinerea, Rhizoctonia cerealis, and Colletotrichum capsici. The models were validated by R, R2, RA2, variance inflation factor, F, and P values testing and residual analysis. It was concluded from the models that the 13C NMR chemical shifts of C8, C10, C7, and the 1H NMR chemical shifts of Ha contributed positively to the activity against Fusarium graminearum, Botrytis cinerea, Colletotrichum capsici, and Rhizoctonia cerealis, respectively. The models indicated that decreasing the election cloud density of specific nucleuses in compounds, for example, by the substituting of electron withdrawing groups, would improve the antifungal activity. These models demonstrated the practical application meaning of chemical shifts in the quantitative structure–activity relationship study. Furthermore, a practical guide was provided for further structural optimization of the antifungal phenylhydrazine-substituted tetronic acid derivatives based on the 1H NMR and 13C NMR chemical shifts.  相似文献   

13.
14.
The13C NMR spectra of a number of polychiorinated dibenzo-p-dioxins (PCDD) were measured. These and previously known spectra were used for the development of a method for calculation of13C NMR spectra of chloroaromatics in the framework of a two-particle increment scheme for carbon chemical shifts. The scheme one allows to calculate13C chemical shifts for all 75 PCDD.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 760–761, April, 1994.  相似文献   

15.
A hybrid sequential molecular mechanics and quantum mechanical approach to modeling cyclic peptides has led to an effective method for predicting their 1H and 13C NMR chemical shift values. The method was first developed to predict chemical shifts in chloroform before being adapted to a more peptide friendly solvent, DMSO. Finally the effectiveness of this method was tested in a blind fashion and excellent agreement with the experimental NMR chemical shifts was observed.  相似文献   

16.
17.
A systematic density functional theory (DFT) study of the accuracy factors (functionals, basis sets, and solvent effects) for the computation of 15N NMR chemical shifts has been performed in the series of condensed nitrogen-containing heterocycles. The behavior of the most representative functionals was examined based on the benchmark calculations of 15N NMR chemical shifts in the reference set of compounds. It was found that the best agreement with experiment was achieved with OLYP functional in combination with aug-pcS-3(N)//pc-2 locally dense basis set scheme providing mean absolute error of 5.2 ppm in the range of about 300 ppm. Taking into account solvent effects was performed within a general Tomasi's polarizable continuum model scheme. It was also found that computationally demanding supermolecular solvation model computations essentially improved some “difficult” cases, as was illustrated with phenanthroline dissolved in methanol. Based on the performed calculations, some 200 unknown 15N NMR chemical shifts were predicted with a high level of confidence for about 50 real-life condensed nitrogen-containing heterocycles, which could serve as a practical guide in structural elucidation of this class of compounds.  相似文献   

18.
The 13C NMR chemical shifts of methoxy carbons in chlorinated anisoles and guaiacols have been measured for acetone-d6 solutions. Multiple linear regression analysis, and also ‘simple sum rule’ calculations, have been used to estimate the effects of the chlorine atoms (the position and degree of substitution) on the chemical shifts. The most important effects have shown to be due to the chlorine atoms adjacent to the methoxy and hydroxy substituents. For chlorinated guaiacols, the greatest effect is due to the chlorine atom adjacent to the methoxy group. For chlorinated anisoles, the substituents adjacent to the methoxy group (2,6-disubstitution) cause large effects. For both groups of compounds, the chemical shifts are also greatly influenced by the number of chlorine substituents. Using the three most important independent variables, the average differences between the observed and calculated chemical shifts are ca 0.2 ppm for anisoles and 0.1 ppm for guaiacols. For chloroguaiacols, the corresponding difference was only 0.1 ppm when calculations were performed using single substituent effects.  相似文献   

19.
13C chemical shifts obtained under uniform conditions for selected compounds containing secondary aliphatic fragments were employed in a linear regression analysis. Two-parameter relationships describing the substituent effects in the saturated framework were calculated, and the usefulness of such calculations is discussed. Finally, coefficients for linear relationships in primary and secondary alkyl derivatives are compared.  相似文献   

20.
This study aimed at investigating the performance of a series of basis sets, density functional theory (DFT) functionals, and the IEF-PCM solvation model in the accurate calculation of (1)H and (13)C NMR chemical shifts in toluene-d(8). We demonstrated that, on a test set of 37 organic species with various functional moieties, linear scaling significantly improved the calculated shifts and was necessary to obtain more accurate results. Inclusion of a solvation model produced larger deviations from the experimental data as compared to the gas-phase calculations. Moreover, we did not find any evidence that very large basis sets were necessary to reproduce the experimental NMR data. Ultimately, we recommend the use of the BMK functional. For the (1)H shifts the use of the 6-311G(d) basis set gave linearly scaled mean unsigned (MU) and root-mean-square (rms) errors of 0.15 ppm and 0.21 ppm, respectively. For the calculation of the (13)C chemical shifts the 6-31G(d) basis set produced MUE of 1.82 ppm and RMSE of 3.29 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号