首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is likely that the LHC will observe a color- and charge-neutral scalar whose decays are consistent with those of the standard model (SM) Higgs boson. The Higgs interpretation of such a discovery is not the only possibility. For example, electroweak symmetry breaking could be triggered by a spontaneously broken, nearly conformal sector. The spectrum of states at the electroweak scale would then contain a narrow scalar resonance, the pseudo-Goldstone boson of conformal symmetry breaking, with Higgs-boson-like properties. If the conformal sector is strongly coupled, this pseudodilaton may be the only new state accessible at high energy colliders. We discuss the prospects for distinguishing this mode from a minimal Higgs boson at the LHC and ILC. The main discriminants between the two scenarios are (i) cubic self-interactions and (ii) a potential enhancement of couplings to massless SM gauge bosons.  相似文献   

2.
The Standard Model (SM) Higgs boson was predicted by theorists in the 1960s during the development of the electroweak theory. Prior to the startup of the CERN Large Hadron Collider (LHC), experimental searches found no evidence of the Higgs boson. In July 2012, the ATLAS and CMS experiments at the LHC reported the discovery of a new boson in their searches for the SM Higgs boson. Subsequent experimental studies have revealed the spin-0 nature of this new boson and found its couplings to SM particles consistent to those of a Higgs boson. These measurements confirmed the newly discovered boson is indeed a Higgs boson. More measurements will be performed to compare the properties of the Higgs boson with the SM predictions.  相似文献   

3.
《Comptes Rendus Physique》2015,16(4):368-378
To present knowledge, all the physics at the Large Hadron Collider (LHC) can be described in the framework of the Standard Model (SM) of particle physics. Indeed the newly discovered Higgs boson with a mass close to 125 GeV seems to confirm the predictions of the SM. Thus, besides looking for direct manifestations of the physics beyond the SM, one of the primary missions of the LHC is to perform ever more stringent tests of the SM. This requires not only improved theoretical developments to produce testable predictions and provide experiments with reliable event generators, but also sophisticated analyses techniques to overcome the formidable experimental environment of the LHC and perform precision measurements. The present article proposes an overview of the present theoretical tools and of the experimental results in the field of strong and electroweak interactions.  相似文献   

4.
We present a study of the sensitivity of the International Linear Collider (ILC) to electroweak parameters in the absence of a light Higgs boson. In particular, we consider those parameters that have been inaccessible at previous colliders, quartic gauge couplings. Within a generic effective-field theory context we analyze all processes that contain quasi-elastic weak-boson scattering, using complete six-fermion matrix elements in unweighted event samples, fast simulation of the ILC detector, and a multi-dimensional parameter fit of the set of anomalous couplings. The analysis does not rely on simplifying assumptions such as custodial symmetry or approximations such as the equivalence theorem. We supplement this by a similar new study of triple weak-boson production, which is sensitive to the same set of anomalous couplings. Including the known results on triple gauge couplings and oblique corrections, we thus quantitatively determine the indirect sensitivity of the ILC to new physics in the electroweak symmetry-breaking sector, conveniently parameterized by real or fictitious resonances in each accessible spin/isospin channel. PACS 11.30.Qc; 12.39.Fe; 12.60.Fr; 13.66.Jn  相似文献   

5.
We present an update of the global fit of the Standard Model electroweak sector to latest experimental results. We include new kinematic top quark and W boson mass measurements from the LHC, a \(\sin \!^2\theta ^{\ell }_{\mathrm{eff}}\) result from the Tevatron, and a new evaluation of the hadronic contribution to \(\alpha (M_Z^2)\). We present tests of the internal consistency of the electroweak Standard Model and updated numerical predictions of key observables. The electroweak data combined with measurements of the Higgs boson coupling strengths and flavour physics observables are used to constrain parameters of two-Higgs-doublet models.  相似文献   

6.
One of the main motivations for low-energy supersymmetric theories is their ability to address the hierarchy and naturalness problems in the Higgs sector of the standard model. In these theories, at least two doublets of scalar fields are required to break the electroweak symmetry and to generate the masses of the elementary particles, resulting in a rather rich Higgs spectrum. The search for the Higgs bosons of supersymmetry and the determination of their basic properties is one of the major goals of high-energy colliders and, in particular, the LHC, which will soon start operation. We review the salient features of the Higgs sector of the minimal supersymmetric standard model and of some of its extensions and summarize the prospects for probing them at the LHC and at the future ILC. In memoriam of Julius Wess, 1934–2007.  相似文献   

7.
Among the Z-pole observables, AFB^(0,b) and Ae display moderately large standard deviations from the Standard Model predictions. This result can be interpreted as independent experimental evidence for new physics beyond the SM, even if the 125 GeV Higgs-like boson at the LHC is ultimately confirmed as the SM Higgs. A recalculated global electroweak fit with a model-independent Z' shows that Z' can simultaneously suppress AFB(0,b) and Ae at the Z-pole, and reduce the largest deviation from 2.6σ in SM to 1.0σ in our scenario. The Z' fitting results also support a negative S parameter.  相似文献   

8.
The existence of a 4th SM family would produce a large enhancement of the gluon fusion channel of Higgs boson production at hadron colliders. In this case, the SM Higgs boson could be seen at the CERN Large Hadron Collider (LHC) via the golden mode () with an integral luminosity of only a few fb-1. Received: 26 February 2002 / Published online: 18 October 2002  相似文献   

9.
Maxim Perelstein 《Pramana》2006,67(5):813-820
Little Higgs models are an interesting extension of the Standard Model at the TeV scale. They provide a simple and attractive mechanism of electroweak symmetry breaking. We review one of the simplest models of this class, the Littlest Higgs model, and its extension with T parity. The model with T parity satisfies precision electroweak constraints without fine-tuning, contains an attractive dark matter candidate, and leads to interesting phenomenology at the Large Hadron Collider (LHC).  相似文献   

10.
We derive cubic and quartic couplings of the Higgs singlet extension of the SM and the two Higgs doublet model. We also examine the number of CP violated couplings in a model with n Higgs doublet model and a model with ns Higgs singlets and nd Higgs doublets. We conclude that in order to reconstruct the Higgs potential with multi Higgs fields at the LHC and future colliders, to detect the cubic/quartic couplings is necessary.  相似文献   

11.
We present an update of the Standard Model fit to electroweak precision data. We include newest experimental results on the top-quark mass, the W mass and width, and the Higgs-boson mass bounds from LEP, Tevatron and the LHC. We also include a new determination of the electromagnetic coupling strength at the Z pole. We find for the Higgs-boson mass $91^{+30}_{-23}~\mbox{GeV}$ and $120^{+12}_{-5}~\mbox{GeV}$ when not including and including the direct Higgs searches, respectively. From the latter fit we indirectly determine the W mass to be $(80.360^{+0.014}_{-0.013})~\mbox{GeV}$ . We exploit the data to determine experimental constraints on the oblique vacuum polarisation parameters, and confront these with predictions from the Standard Model (SM) and selected SM extensions. By fitting the oblique parameters to the electroweak data we derive allowed regions in the BSM parameter spaces. We revisit and consistently update these constraints for a fourth fermion generation, two Higgs doublet, inert Higgs and littlest Higgs models, models with large, universal or warped extra dimensions and technicolour. In most of the models studied a heavy Higgs boson can be made compatible with the electroweak precision data.  相似文献   

12.
We present the results of a realistic global fit of the Lagrangian parameters of the minimal supersymmetric standard model (MSSM) assuming universality for the first and second generations and real parameters. No assumptions on the SUSY breaking mechanism are made. The fit is performed using the precision of future mass measurements of superpartners at the LHC and mass and polarised topological cross-section measurements at the ILC. Higher-order radiative corrections are accounted for wherever possible to date. Results are obtained for a modified SPS1a MSSM benchmark scenario but they were checked not to depend critically on this assumption. Exploiting a simulated annealing algorithm, a stable result is obtained without any a priori assumptions on the values of the fit parameters. Most of the Lagrangian parameters can be extracted at the percent level or better if theoretical uncertainties are neglected. Neither LHC nor ILC measurements alone will be sufficient to obtain a stable result. The effects of theoretical uncertainties arising from unknown higher-order corrections and parametric uncertainties are examined qualitatively. They appear to be relevant and the result motivates further precision calculations. The obtained parameters at the electroweak scale are used for a fit of the parameters at high-energy scales within the bottom-up approach. In this way regularities at these scales are explored and the underlying model can be determined with hardly any theoretical bias. Fits of high-scale parameters to combined LHC+ILC measurements within the mSUGRA framework reveal that even tiny distortions in the low-energy mass spectrum already lead to unacceptable χ2 values. This does not hold for ‘LHC-only’ inputs. PACS 11.30.Pb, 12.60.Jv  相似文献   

13.
We analyze the significant new model independent constraints on extensions of the standard model (SM) that follow from the recent measurements of the Bs(0)Bs(0) mass difference. The time-dependent CP asymmetry in Bs-->psiphi, S(psiphi), will be measured with good precision in the first year of CERN Large Hadron Collider (LHC) data taking, which will further constrain the parameter space of many extensions of the SM, in particular, next-to-minimal flavor violation. The CP asymmetry in semileptonic Bs decay, ASL(s), is also important to constrain these frameworks, and could give further clues to our understanding the flavor sector in the LHC era. We point out a strong correlation between S(psiphi) and ASL(s) in a very broad class of new physics models.  相似文献   

14.
ABDELHAK DJOUADI 《Pramana》2012,79(4):513-539
The theoretical aspects of the physics of Higgs bosons are reviewed focussing on the elements that are relevant for the production and detection at present hadron colliders. After briefly summarizing the basics of electroweak symmetry breaking in the Standard Model, the Higgs production at the LHC and at the Tevatron is discussed, with some focus on the main production mechanism, the gluon?Cgluon fusion process, and the main Higgs decay modes and the experimental detection channels are discussed. Then the case of the minimal supersymmetric extension of the Standard Model is briefly surveyed. In the last section, the prospects for determining the fundamental properties of the Higgs particles are reviewed, once they have been experimentally observed.  相似文献   

15.
We investigate whether models with flat extra dimensions in which SM fields propagate can give a significant contribution to the anomalous magnetic moment of the muon (MMM). In models with only SM gauge and Higgs fields in the bulk, the contribution to the MMM from Kaluza–Klein (KK) excitations of gauge bosons is very small. This is due to the constraint on the size of the extra dimensions from tree-level effects of KK excitations of gauge bosons on precision electroweak observables such as Fermi constant. If the quarks and leptons are also allowed to propagate in the (same) bulk (“universal” extra dimensions), then there are no contributions to precision electroweak observables at tree-level. However, in this case, the constraint from one-loop contribution of KK excitations of (mainly) the top quark to T parameter again implies that the contribution to the MMM is small. We show that in models with leptons, electroweak gauge and Higgs fields propagating in the (same) bulk, but with quarks and gluon propagating in a sub-space of this bulk, both the above constraints can be relaxed. However, with only one Higgs doublet, the constraint from the process b requires the contribution to the MMM to be smaller than the SM electroweak correction. This constraint can be relaxed in models with more than one Higgs doublet.  相似文献   

16.
A. De Roeck  J. Ellis  C. Grojean  S. Heinemeyer  K. Jakobs  G. Weiglein  J. Wells  G. Azuelos  S. Dawson  B. Gripaios  T. Han  J. Hewett  M. Lancaster  C. Mariotti  F. Moortgat  G. Moortgat-Pick  G. Polesello  S. Riemann  M. Schumacher  K. Assamagan  P. Bechtle  M. Carena  G. Chachamis  K. F. Chen  S. De Curtis  K. Desch  M. Dittmar  H. Dreiner  M. Dührssen  B. Foster  M. T. Frandsen  A. Giammanco  R. Godbole  S. Gopalakrishna  P. Govoni  J. Gunion  W. Hollik  W. S. Hou  G. Isidori  A. Juste  J. Kalinowski  A. Korytov  E. Kou  S. Kraml  M. Krawczyk  A. Martin  D. Milstead  V. Morton-Thurtle  K. Moenig  B. Mele  E. Ozcan  M. Pieri  T. Plehn  L. Reina  E. Richter-Was  T. Rizzo  K. Rolbiecki  F. Sannino  M. Schram  J. Smillie  S. Sultansoy  J. Tattersall  P. Uwer  B. Webber  P. Wienemann 《The European Physical Journal C - Particles and Fields》2010,66(3-4):525-583
Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb?1 of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb?1 of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions.  相似文献   

17.
Top-quark physics plays an important r?le at hadron colliders such as the Tevatron at Fermilab or the LHC at CERN. Given the planned precision at these colliders, precise theoretical predictions are required. In this paper we present the complete electroweak corrections to QCD-induced top-quark pair production in quark-antiquark annihilation. In particular we provide compact analytic expressions for the differential partonic cross section, which will be useful for further theoretical investigations. Received: 20 September 2005, Published online: 24 November 2005  相似文献   

18.
We study the observability for a lepton flavor-changing decay of a Higgs boson h--> mutau at Hadron colliders. Flavor-changing couplings of a Higgs boson exist at tree level in models with multiple Higgs doublets. The hmutau coupling is particularly motivated by the favorable interpretation of nu(mu)-nu(tau) oscillation. We find that at the Tevatron run II the unique mutau signature could serve as the Higgs discovery channel, surpassing expectations for Higgs boson searches in the SM and in a large parameter region of the MSSM. The sensitivity will be greatly improved at the LHC, beyond the coverage at a muon collider Higgs factory.  相似文献   

19.
The global fit of the Standard Model to electroweak precision data, routinely performed by the LEP electroweak working group and others, demonstrated impressively the predictive power of electroweak unification and quantum loop corrections. We have revisited this fit in view of (i) the development of the new generic fitting package, Gfitter, allowing for flexible and efficient model testing in high-energy physics, (ii) the insertion of constraints from direct Higgs searches at LEP and the Tevatron, and (iii) a more thorough statistical interpretation of the results. Gfitter is a modular fitting toolkit, which features predictive theoretical models as independent plug-ins, and a statistical analysis of the fit results using toy Monte Carlo techniques. The state-of-the-art electroweak Standard Model is fully implemented, as well as generic extensions to it. Theoretical uncertainties are explicitly included in the fit through scale parameters varying within given error ranges. This paper introduces the Gfitter project, and presents state-of-the-art results for the global electroweak fit in the Standard Model (SM), and for a model with an extended Higgs sector (2HDM). Numerical and graphical results for fits with and without including the constraints from the direct Higgs searches at LEP and Tevatron are given. Perspectives for future colliders are analysed and discussed. In the SM fit including the direct Higgs searches, we find M H =116.4−1.3+18.3 GeV, and the 2σ and 3σ allowed regions [114,145] GeV and [[113,168] and [180,225]] GeV, respectively. For the strong coupling strength at fourth perturbative order we obtain α S (M Z 2)=0.1193−0.0027+0.0028(exp )±0.0001 (theo). Finally, for the mass of the top quark, excluding the direct measurements, we find m t =178.2−4.2+9.8 GeV. In the 2HDM we exclude a charged-Higgs mass below 240 GeV at 95% confidence level. This limit increases towards larger tan β, e.g., is excluded for tan β=70.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号