首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition metal complexes with ligands based on dipyrido[3,2-a:2′,3′-c]phenazine (dppz) have been synthesized. As metal fragments the [Ru(bpy)2]+, Re(CO)3Cl and the [Cu(PPh3)2]+ moieties have been used. The complexes containing amino- or bis(bromomethyl) substituted dppz ligands can be used for fullerene-based donor-bridge-acceptor dyads. The electronic absorption spectra of these complexes and of the dppz ligands were investigated. The dppz ligands show strong absorptions in the 300 and 390 nm region. An additional absorption band in the visible region (∼440 nm) is observed for the amino-substituted dppz-ligands. Ruthenium complexes exhibited broad absorption bands at 350-500 nm arising from intraligand-based transitions and the MLCT transition. MLCT transitions of the Re(I) and Cu(I) complexes are observed as shoulders of the stronger ligand-based absorption band tailing out to 400-500 nm. The electrochemically active complexes and ligands were studied by cyclic voltammetry and square-wave voltammetry. All ligands show one first reversible one-electron reduction located at the phenazine portion. These reductions are shifted to more positive redox potentials upon complexation. Oxidation potentials for reversible processes could be determined for the Ru2+/Ru3+ couple. For rhenium(I) and copper(I) complexes one irreversible oxidation process is observed.  相似文献   

2.
Three new N2S2 donor ligands 1,1′-((2-(2-(phenylthio)phenylthio)phenyl)methylene)bis(3,5-R-1H-pyrazole), R = H (LH), R = Me (LMe), R = i-Pr (Li-Pr) have been prepared and characterized. These bifunctional ligands incorporate two distinct chelate donor systems, by virtue of the presence of bispyrazole and bisthioether functions. The preferred conformation of these ligands is such that the N2 and S2 donor moieties may be oriented in opposite directions, thus favoring the formation of molecular chains when treated with AgBF4. The X-ray structures of Ag(I) complexes show that, depending on the steric hindrance present on the pyrazole rings, these ligands behave as κ4-SSNN-μ bridging tetradentate (when R = H), or κ3-SNN-μ bridging tridentate (when R = Me, i-Pr). Interestingly, [Ag(LH)]BF4 crystallizes in the chiral space group P41, with the molecular chain that is folded around the 41 screw axis.  相似文献   

3.
Rhenium pentacarbonyl halides react with (2-cyanoethyl) diphenylphosphine (L) to yield complexes of the stoichiometry [Re(CO)3LX]n. The infrared spectra of the complexes are consistent with structures containing terminal halogens and bridging L groups. Molecular weight studies indicate that n is two for solutions of 10−3M. The nitrile portion of the ligand is readily displaced by σ donor ligands to yield complexes in which L functions as a monodentate phosphine.  相似文献   

4.
Cp2Ti(dithiolene) and Cp2Ti(diselenolene) complexes containing the N-methyl-1,3-thiazoline-2-thione-4,5-dithiolate ligand (Me-thiazdt), the N-phenyl-1,3-thiazoline-2-thione-4,5-dithiolate ligand (Ph-thiazdt) and the N-methyl-1,3-thiazoline-2-thione-4,5-diselenolate ligand (Me-thiazds) have been synthesized. Three approaches have been developed in order to generate the dithiolene or the diselenolene ligands which were reacted with Cp2TiCl2 to form the corresponding heteroleptic complexes. Their X-ray crystal structures, UV-Vis absorption spectra as well as their redox properties, determined by cyclic voltammetry have been investigated and discussed. Variable-temperature 1H NMR experiments have been performed in order to determine the activation energies of the chelate ring inversion.  相似文献   

5.
The 1,3-bis(2-benzimidazyl)-2-thiapropane (TP2) and 1,5-bis(2-benzimidazyl)-3-thiapentane (TP3) ligands form 5-coordinate square pyramidal monometallic complexes with PdCl2. In both complexes the ligands act as chelating tridentate, through two of the nitrogen atoms in the imidazole ring and the sulphur atom of the bridging group. The ligands and complexes were characterised by analytical data and by modern spectroscopic methods such as FT-Raman, i.r., 1H and 13C-n.m.r. spectra.  相似文献   

6.
13C NMR resonances of a series of oxo-centered trinuclear chromium complexes have been observed and assigned. A π-delocalization mechanism dominates where ligands contain aromatic substituents or bridging carboxylate functionalities, consistent with the presence of a metal center where to first approximation unpaired electrons reside solely in t2g. orbitals. A contrast is made between the delocalization mechanism in these complexes and those of their isostructural Mn and Fe analogues.  相似文献   

7.
The reactions of mono‐ and bidentate aromatic nitrogen‐containing ligands with [Ru(CO)3Cl2]2 in alcohols have been studied. In alcoholic media the nitrogen ligands act as bases promoting acidic behaviour of alcohols and the formation of alkoxy carbonyls [Ru(N–N)(CO)2Cl(COOR)] and [Ru(N)2(CO)2Cl(COOR)]. Other products are monomers of type [Ru(N)(CO)3Cl2], bridged complexes such as [Ru(CO)3Cl2]2(N), and ion pairs of the type [Ru(CO)3Cl3]? [Ru(N–N)(CO)3Cl]+ (N–N = chelating aromatic nitrogen ligand, N = non‐chelating or bridging ligand). The reaction and the product distribution can be controlled by adjusting the reaction stoichiometry. The reactivity of the new ruthenium complexes was tested in 1‐hexene hydroformylation. The activity can be associated with the degree of stability of the complexes and the ruthenium–ligand interaction. Chelating or bridging nitrogen ligands suppresses the activity strongly compared with the bare ruthenium carbonyl chloride, while the decrease in activity is less pronounced with monodentate ligands. A plausible catalytic cycle is proposed and discussed in terms of ligand–ruthenium interactions. The reactivity of the ligands as well as the catalytic cycle was studied in detail using the computational DFT methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Hydroxide-bridged high-valent oxidants have been implicated as the active oxidants in methane monooxygenases and other oxidases that employ bimetallic clusters in their active site. To understand the properties of such species, bis-μ-hydroxo-NiII2 complex ( 1 ) supported by a new dicarboxamidate ligand (N,N′-bis(2,6-dimethyl-phenyl)-2,2-dimethylmalonamide) was prepared. Complex 1 contained a diamond core made up of two NiII ions and two bridging hydroxide ligands. Titration of the 1 e oxidant (NH4)2[CeIV(NO3)6] with 1 at −45 °C showed the formation of the high-valent species 2 and 3 , containing NiIINiIII and NiIII2 diamond cores, respectively, maintaining the bis-μ-hydroxide core. Both complexes were characterised using electron paramagnetic resonance, X-ray absorption, and electronic absorption spectroscopies. Density functional theory computations supported the spectroscopic assignments. Oxidation reactivity studies showed that bis-μ-hydroxide-NiIII2 3 was capable of oxidizing substrates at −45 °C at rates greater than that of the most reactive bis-μ-oxo-NiIII complexes reported to date.  相似文献   

9.
The following copper(I) and silver(I) complexes of 2-amino-1,3,4-thiadiazole (atz) and 2-ethylamino-1,3,4-thiadiazole (eatz) have been prepared and studied by conductometric, IR and Raman methods: CuXL(X = Cl, Br, I; L = atz, eatz), CuXL3(X = ClO4, NO3; L = atz, eatz), AgClO4·1.5atz·1/3 EtOH, AgNO3·2.5atz, AgClO4·3eatz, AgNO3·eatz. The ligands are bonded through the amine nitrogen atoms with ν(MN) bands in the 520–410 cm?1 region. The CuXL complexes have a trigonal (N, 2Xb) coordination with a probable weaker axial interaction. The CuXL3 and AgCIO4·3eatz complexes probably have a trigonal pyramidal (3N,O) coordination. In the atz complexes of silver perchlorate and nitrate some ligand molecules are bridging. The AgNO3·2.5atz complex is likely to have a dimeric structure with tetrahedral coordination of the silver ion.  相似文献   

10.
A pair of isostructural azido- or thiocyanato-bridged centrosymmetric dinuclear copper(II) complexes, [Cu2L21,3-N3)2] (1) and [Cu2L21,3-NCS)2] (2), derived from the Schiff base ligand 4-nitro-2-[(2-diethylaminoethylimino)methyl]phenol (HL), have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Each Cu atom in the complexes is five-coordinate in a square pyramidal geometry by one O and two N atoms of one Schiff base ligand, and by two terminal donor atoms from two bridging azide or thiocyanate ligands. Both the azide and thiocyanate ligands adopt end-to-end bridging mode in the complexes. The distance between the two copper atoms is 5.205(2) Å for (1) and 5.515(2) Å for (2). The antimicrobial activity of the complexes has been tested.  相似文献   

11.
4-Methyl-N-{2-([1-alkyl-2-[2-(p-tolylsulfonylamino)phenyl]benzimidazol-5-yl]iminomethyl)phenyl}-benzenesulfamides (H2L) and zinc complexes on their basis Zn2L2 have been synthesized. The structure of the ligands and complexes has been studied by IR, UV, 1Н NMR spectroscopy, X-ray absorption spectroscopy, and X-ray diffraction analysis.  相似文献   

12.
A series of the M(L)Cl2 · nH2O and {M(L)}2(OAc)4 complexes (M = NiII, CoII, and CuII; L is 3- and 4-(2-pyridyl)-1,3-benzothiazole) were synthesized by the reaction of L with MX2 · nH2O (X = Cl, OAc) in ethanol. The molecular and crystal structures of the CuL2(OAc)4 binuclear complex (L is 4-(2-pyridyl)benzothiazole) were determined by X-ray diffraction analysis. The copper atoms have a distorted tetragonal bipyramidal environment and are coordinated to the nitrogen atom of the pyridine moiety of the ligand and to two oxygen atoms of the bridging acetate ligands. The Cu-Cu distance is 2.6129(9) Å. The electrochemical behavior of the synthesized ligands and complexes was studied using the cyclic voltammetry and rotating disk electrode techniques in DMF solutions (0.1 M Bu4NClO4). The primary reduction of all the complexes under study is directed to the metal.  相似文献   

13.
The unusual bridging and semi‐bridging binding mode of tertiary phosphanes, arsanes, and stibanes in dinuclear low‐valent Group 9 complexes have been studied by density functional methods and bonding analyses. The influence of various parameters (bridging and terminal ligands, metal atoms) on the structural preferences and bonding of dinuclear complexes of the general composition [A1 M1(μ‐CH2)2(μ‐EX3)M2 A2] (M1, M2=Co, Rh, Ir; A1, A2=F, Cl, Br, I, κ2‐acac; E=P, As, Sb, X=H, F, CH3) has been analyzed. A number of factors have been identified that favor bridging or semi‐bridging modes for the phosphane ligands and their homologues. A more symmetrical position of the bridging ligand EX3 is promoted by more polar E? X bonding, but by less electronegative (softer) terminal anionic ligands. Among the Group 9 metal elements Co, Rh, and Ir, the computations clearly show that the 4d element rhodium exhibits the largest preference for a {M1(μ‐EX3)M2} bridge, in agreement with experimental observation. Iridium complexes should be valid targets, whereas cobalt does not seem to support well a symmetric bridging mode. Analyses of the Electron Localization Function (ELF) indicate a competition between a delocalized three‐center bridge bond and direct metal–metal bonding.  相似文献   

14.
A series of luminescent bis‐cyclometalated gold(III) complexes containing bridging alkynyl ligands of different natures has been synthesised and characterised. The photophysical properties of the complexes have been investigated through electronic absorption spectroscopy and emission studies. The vibronic emission bands are found to originate from the triplet intraligand (IL) π–π* excited states of the bis‐cyclometalating ligands with some mixing of 3IL π–π* character of the alkynyl ligands. The electrochemical study of a nonsymmetric dinuclear complex shows two successive reduction processes originating from the reductions of the two different cyclometalating ligands. The complexes are found to undergo supramolecular self‐assembly processes driven by π–π stacking and hydrophobic/hydrophilic interactions to give honeycomb nanostructures, as revealed from the SEM images. Solvent‐dependent morphological transformations have also been observed, which have been studied by SEM and 1H NMR spectroscopy.  相似文献   

15.
Several dendritic bridging ligands were designed and synthesized to develop more sensitive and efficient electrochemiluminescent (ECL) polynuclear Ru(II) complexes. Various types of novel two-armed, four-armed and six-armed tris(bipyridyl)ruthenium core dendrimers were synthesized by coordinating dendritic polybipyridyl ligands with Ru(II) complexes, and the effect of the ligand and the dendritic network on the ECL characteristics were studied. Their electrochemical redox potentials, UV, photoluminescence (PL), and relative ECL intensities were also investigated in detail. The synthesized metallodendrimers exhibited strong metal-to-ligand charge transfer (MLCT) absorption at 428-451 nm and emission at 591-601 nm. Most of the newly synthesized metallodendrimers showed enhanced ECL intensities compared to the reference complex, [Ru(o-phen)3](PF6)2. In particular, the ECL intensities of the six-armed heptanuclear ruthenium complexes were almost four times greater than that of [Ru(o-phen)3]2+. These metallodendrimers could be utilized as efficient ECL materials and light emitting devices.  相似文献   

16.
The structures, magnetic properties, and catalytic activity for H2O2 disproportionation are reported for three new complexes [Mn2(acac),(pydz)] ( 1 ), [Mn(acac)2(pym)] ( 2 ), and (Mn(acac)2(pyz)] ( 3 ) (acac = 2,4-pentanedionate, pydz = pyridazine, pym = pyrimidine, pyz = pyrazine). The X-ray crystal structures of 1 and 3 have been determined. Complex 1 crystallizes as a binuclear complex with η2-pyridazine and acac bridging ligands 3 crystallizes as a linear polymeric chain with bridging pyrazine molecule. Cryomagnetic investigations (4-300 K) reveal a weak intramolecular antiferromagnetic spin exchange with J = ?2.05, ?0.04, and ?0.05 cm?1 for the complexes of 1, 2 , and 3 , respectively. The complexes 1–3 showed two-step catalytic activity for H2O2 disproportionation in pyridine solution at 0 °C.  相似文献   

17.
A number of [Ph3Sn(IV)]+ complexes formed with ligands containing -OH (-CO), or -COOH group(s) and aromatic {N} donor atom have been prepared. The binding sites of the ligands were identified by FT-IR spectroscopic measurements. In the complexes containing hydroxy and carboxylate functions, the carboxylato group is coordinated to the organotin(IV) centres in monodentate or bridging bidentate manner. It was also found that in the hydroxypyridine and -pyrimidine complexes the [Ph3Sn(IV)]+ moiety in most cases reacts with the phenolic form of the ligands. The rationalisation of the experimental 119Sn Mössbauer nuclear quadrupole splittings, |Δexp| - according to the point charge model formalism - together with the FT-IR data support the formation of trigonal bipyramidal (Tbp) or octahedral (Oh) molecular structures. Furthermore, X-ray diffraction analysis has been performed on the triphenyltin(IV)-3-phenolato-2(1H)-pyridinone-O,O′ single crystals. The penta-coordinated tin center exhibits a Tbp geometry. In case of 2-picolinic acid, a trans-phenylation was observed during the complexation, resulting [Ph2Sn(IV)]2+ complex and Ph4Sn(IV).  相似文献   

18.
Formation of nickel(II) complexes with ethylenediaminetetraacetic acid (Edta) and 2,2′-dipyridyl (Dipy) has been studied by electronic absorption spectroscopy. Mathematical modeling has demonstrated that the most probable mathematical models to describe the experimental dependences of absorption on the medium acidity and concentration of solution components relies on the dissociation constants of the ligands (K i ) and stability constants (β) of homoligand, heteroligand, and polynuclear complexes of general composition [Ni m Dipy n Edta r ]2m ? 4r (m = 1–4, n = 0–8, r = 0–1) as parameters. The reaction equilibrium constants and stability constants of the resulting complexes have been calculated. The structures of these complexes have been suggested.  相似文献   

19.
Two cobalt(II) coordination polymers, [Co(L1)(tbi)(H2O)] n (1) and [Co(L2)(tbi)] n (2) (L1 = 1,4-bis(benzimidazole)butane, L2 = 1,4-bis(2-methylbenzimidazole)butane, H2tbi = 5-tert-butyl isophthalic acid) have been synthesized under hydrothermal conditions and characterized by physicochemical and spectroscopic methods as well as by single-crystal X-ray diffraction analysis. Both complexes exhibit similar 2D (4,4) layer structures, constructed from tbi2? and bis(benzimidazole)-based bridging ligands. The cobalt centers display different coordination environments, with an octahedral geometry in 1 and a distorted square-pyramidal configuration in 2. The thermal stabilities, fluorescence and catalytic properties of both complexes have been investigated.  相似文献   

20.
The complexes [Cu2Br4]2?, [Cu2I4]2?, [Cu2I2Br2]2?, [Cu2I3Cl]2?, [Ag2Cl4]2? have been characterized as their isomorphous bis(triphenylphosphoranylidene)ammonium ([Ph3PNPPh3]+ = PNP+) salts by single crystal structural determinations. All anions show the centrosymmetric doubly halogen‐bridged forms [XM(μ‐X)2MX]2? with three‐coordinate metal atoms that have been observed in [M2X4]2? complexes with other large organic cations. In [Cu2I2Br2]2? the iodide ligands occupy the bridging positions and the bromide the terminal positions, while in [Cu2I3Cl]2?, obtained in an attempt to prepare [Cu2I2Cl2]2?, two of the iodide ligands occupy the bridging positions with the third iodide and the chloride ligand occupying two statistically disordered terminal positions. In [Ag2Cl4]2? the distortion from ideal trigonal coordination of the metal atom is greater than in the copper complexes, but less than in other previously reported [Ag2Cl4]2? complexes with organic cations. The ν(MX) bands have been assigned in the far‐IR spectra, and confirm previous observations regarding the unexpectedly simple IR spectra of [Cu2X4]2? complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号