首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation and evolution of dinuclear systems in quasifission reactions are investigated. The process of formation of reaction products is analyzed based on the concept of a dinuclear system. Isotopic trends of cross sections of production of superheavy nuclei in quasifission reactions are discussed. The yields of new neutron-rich isotopes of nuclei with Z = 64–80 in quasifission reactions are predicted. The mechanism of production of complex fragments in complete fusion and quasifission reactions is analyzed.  相似文献   

2.
E A Cherepanov 《Pramana》1999,53(3):619-630
The dinuclear system concept of complete fusion of nuclei has been applied to the analysis of superheavy elements synthesis. The optimal excitation energy of compound nuclei and production cross sections in the cold synthesis of heavy elements with charge Z=102–112 have been calculated. The possibility of synthesizing the element with magic number Z=114 in cold and hot fusion reactions has been considered.  相似文献   

3.
Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a set of microscopically derived master equations numerically and applying statistical theory, respectively. Fusion-fission reactions and evaporation residue excitation functions of synthesizing superheavy nuclei (SHN) are investigated systematically and compared them with available experimental data. The possible factors that affecting the production cross sections of SHN are discussed in this workshop.  相似文献   

4.
《Nuclear Physics A》1998,633(3):409-420
Using the dinuclear system concept we present calculations of production cross sections for the heaviest nuclei. The obtained results are in a good agreement with the experimental data. The experimentally observed rapid fall-off of the cross sections of the cold fusion with increasing charge number Z of the compound nucleus is explained. Optimal reactions for the synthesis of the superheavy nuclei are suggested.  相似文献   

5.
Experiments devoted to studying cross sections for fusion and transfer reactions induced by the interaction of beams of halo-like (6He), cluster (6Li and 7Li), and loosely bound (3He) nuclei with nuclei of light and heavy elements are described. The cross sections obtained experimentally for such reactions are analyzed. Special features in the behavior of the cross sections for the formation of evaporation residues and products of transfer reactions at energies in the vicinity of the Coulomb barrier are revealed. In particular, an increase in the cross sections for fusion and transfer reactions involving halo-like nuclei and proceeding at energies in the subbarrier region is observed. The cross sections for neutron-transfer and light-cluster-transfer reactions reachmaximum values at an energy in the vicinity of the Coulomb barrier for the reaction being considered.  相似文献   

6.
The dynamical model proposed earlier for describing fusion-fission reactions was modified in order to take into account an arbitrary orientation of colliding ions. In this model, the evolution of collective coordinates of the system under study is treated as a two-stage process. The motion of the projectile nucleus toward the target nucleus is considered at the first stage, and the evolution of a continuous dinuclear system formed as soon as the projectile and target nuclei touch each other is calculated at the second stage. At either stage of the calculation, the dynamical evolution of the system is described in terms of Langevin equations. The shell structure of the nuclei involved is taken into account at both stages. The difference between the results obtained for the first stage with allowance for an arbitrary orientation of colliding ions and the respective results for the case where their symmetry axes are aligned are discussed. The cross sections for the touching of primary nuclei and for their fusion are calculated, along with the cross sections for evaporation-residue formation in reactions involving nuclei that are prolate and spherical in the ground state. The results are compared with available theoretical and experimental data.  相似文献   

7.
Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a set of microscopically derived master equations numerically and applying statistical theory, respectively. Fusion-fission reactions and evaporation residue excitation functions of synthesizing superheavy nuclei (SHN) are investigated systematically and compared them with available experimental data. The possible factors that affecting the production cross sections of SHN are discussed in this workshop.  相似文献   

8.
The dinuclear system model considers a configuration of two touching nuclei which exchange nucleons. The microscopical justification of the model is presented. The fusion and quasifission processes are described in the reactions of synthesis of heavy and superheavy nuclei. The dependence of evaporation residue cross sections on isotopic composition of colliding nuclei is analyzed. The results agree with the available experimental data.  相似文献   

9.
在双核模型的理论框架下系统研究了超重元素Z = 116 ~121 的蒸发剩余截面,计算过程中核子扩散由主方程描述,同时考虑了全熔合与准裂变的竞争。计算基本再现了利用热熔合反应48Ca+245Cm,48Ca+249Cf 和48Ca+249Bk 产生116~118 号同位素的合成截面。同样,分别以249Bk,249Cf 和243Am 为靶,以48Ca,50Ti 和58Fe 为炮弹,计算了Z = 119~ 121 号同位素的生成截面。结果表明,这些超重核的生成截面随着质子数的增大进一步变小。例如,利用58Fe+243Am 反应合成121 号同位素的最大蒸发剩余截面仅在fb 量级。基于对选择的几个反应系统的系统分析,发现双核系统在熔合蒸发过程中偶Z 奇N 和奇Z 偶N 复合核分别有强的3n 和4n 蒸发道。The production cross sections of superheavy elements with Z = 116~121 have been investigated systematically within the dinuclear system (DNS) concept, where the master equation is solved numerically to obtain the fusion probability. The competition between complete fusion and quasifission, which can strongly affect the cross section of the compound nucleus formation, is taken into account. The evaporation residue cross sections ER calculated for the hot fusion actinide-based reactions (48Ca+245Cm, 48Ca+249Cf and 48Ca+249Bk) are basically in agreement with the known experimental data within one order of magnitude. Similar calculations for the synthesis of superheavy elements up to Z = 121 are performed using the available 249Bk, 249Cf and 243Am as targets and 48Ca, 50Ti and 58Fe as projectiles. Their production cross sections are relatively small,especially for the 58Fe+243Am→301121 reaction. A systematic analysis indicates that the 3n and 4n channelsare respectively the most favorable fusion-evaporation channels in the synthesis of even- and odd-Z superheavy elements.  相似文献   

10.
The development of various approaches to describing the complete fusion of nuclei and their connections with experimental studies is discussed. A brief account of the dinuclear-system concept (DNSC), the approach proposed at Dubna, is given. The DNSC revealed two important features of the complete fusion of massive nuclei: the existence of the inner fusion barrier B fus * and the competition between complete fusion and quasifission channels in a dinuclear system formed at the capture stage. The DNSC was applied to the analysis of reactions used to synthesize superheavy elements (SHE). The DNSC provided a basis for the models of competition between complete-fusion and quasifission channels. Using these models, one can describe the cross section for SHE production in cold-and warm-fusion reactions.  相似文献   

11.
Within the framework of the dinuclear system model,the capture of two colliding nuclei,and the formation and de-excitation process of a compound nucleus are described by using an empirical coupled channel model,solving the master equation numerically and the statistical evaporation model,respectively.In the process of heavy-ion capture and fusion to synthesize superheavy nuclei,the barrier distribution func-tion is introduced and averaging collision orientations are considered.Based on this model,the production cross sections of the cold fusion system 76-82Se+209Bi and the hot fusion systems 55Mn+238U,51V-+244Pu,59 Co+232 Th,48 Ca+247-249 Bk and 45 Sc+246-248 Cm are calculated.The isotopic dependence of the largest production cross sections is analyzed briefly,and the optimal projectile-target combination and excitation energy of the ln-4n evaporation channels are proposed.It is shown that the hot fusion systems 48Ca+247 249Bk in the3n evaporation channels and 45Sc+248Cm in the 2n-4n channels are optimal for synthesizing the superheavy element 117.  相似文献   

12.
Nuclide distributions for deep inelastic fragments are calculated considering the diffusion of the intermediate dinuclear system in a two-dimensional liquid drop potential energy surface. Particle decay from the fragments is taken into account by statistical model calculations. The concept of charge equilibration is investigated. Calculations are compared to previously measured nuclide distributions. Predictions are made for the production cross sections of neutron-rich nuclei in deep inelastic reactions.  相似文献   

13.
Fragments emitted in binary fission from complete fusion nuclei have been investigated for krypton induced reactions on heavy nuclei. Cross sections are between 25 and 5% of the total reaction cross section. It is deduced that complete fusion between krypton projectiles and heavy nuclei is a very improbable process. Most of the reaction products seem to result from a very inelastic interaction which looks like very asymmetric fission.  相似文献   

14.
The effect of entrance channel on decrease of the complete fusion cross sections and on the yield of reaction products are associated with the quasifission which depends on the mass asymmetry and shell structure of colliding nuclei. In reactions of massive projectile and target nuclei, the competition between complete fusion and quasifission appears at the stage of compound nucleus formation, in addition to the increase of the fission probability. It is shown that the yield of quasifission products may be symmetric or asymmetric in dependence on peculiarities of shell structure of reaction fragments. Marima of mass or charge distributions are connected with the peculiarities of shell structure of reaction fragments.  相似文献   

15.
在双核模型框架下,用数值解主方程方法计算了超重核的熔合几率。 明确描述了包含能量、角动量和碎片形变弛豫的相对运动,并与核子扩散过程相耦合。因此,用微观方法推导出的核子跃迁几率是与时间相关的。所计算的以Pb为靶的冷熔合超重核形成截面和以48Ca为弹核的热熔合超重核形成激发函数与已知的实验值在合理的范围内符合。In the dinuclear system conception, the master equation is solved numerically to calculate the fusion probabilities of super heavy nuclei. The relative motion concerning the energy, the angular momentum and the fragment deformation relaxations is explicitly treated to couple with the diffusion process. The nucleon transition probabilities, which are derived microscopically, are related with the energy dissipation of the relative motion, thus they are time dependent. The formation cross sections of the super heavy nuclei from Pb based cold fusion and excitation functions from 48Ca induced hot fusion are reasonably consistent with known experimental data.  相似文献   

16.
通过在形成超重核的重离子俘获和熔合过程中引入位垒分布函数的方法对双核模型做了进一步发展. 超重核形成过程中的俘获、熔合和蒸发3个阶段分别采用了半经验的耦合道模型、数值求解主方程和统计蒸发模型的方法来描述. 计算了近年来Dubna小组利用热熔合反应48Ca(243Am, 3n—5n)288—286115和48Ca(248Cm, 3n—5n)293—291116合成超重新核素的蒸发余核激发函数. 系统分析了48Ca轰击锕系元素U,Np,Pu,Am,Cm合成超重核Z=112—116产生截面的同位素依赖性. 给出了合成超重新核素最佳的弹靶组合和入射能量, 即有最大的超重核产生截面. 计算说明, 壳修正能和中子分离能是影响超重核生成截面产生同位素依赖性的主要因素.  相似文献   

17.
18.
With the Skyrme energy-density functional theory, the nucleus–nucleus potential is calculated and the potential energy surface is obtained with different effective forces for accurately estimating the formation cross sections of superheavy nuclei in massive fusion reactions. The width and height of the potential pocket are influenced by the Skyrme effective forces SkM, SkM*, SkP, SIII, Ska, and SLy4, which correspond to the different equations of state for the isospin symmetry nuclear matter. It is found that the nucleus–nucleus potential is associated with the collision orientation and Skyrme forces. A more repulsive nuclear potential is pronounced with increasing the incompressible modulus of nuclear matter, which hinders the formation of superheavy nuclei. The available data in the fusion-evaporation reaction of 48Ca+238U are nicely reproduced with the SkM* parameter by implementing the potential into the dinuclear system model.  相似文献   

19.
在双核模型基础上,考虑了熔合与准裂变的竞争,通过数值法求解主方程,计算了50Ti,58Fe+208Pb,209Bi这4个反应系统通过冷熔合反应合成超重元素的激发函数,得到了与实验比较符合的结果.计算了不同入射能量时各角动量分波对熔合概率和超重核存活概率的影响以及对蒸发剩余截面的贡献.这些结果对进一步理解超重核的合成机制有重要意义. 关键词: 超重元素 双核模型 熔合反应 蒸发剩余截面  相似文献   

20.
Superheavy elements (SHE) of charge number in the range of Z = 106–112 were synthesized in so-called cold-fusion reactions. The smallness of the excitation energy of compound nuclei is the main advantage of cold-fusion reactions. However, the synthesis of SHEs of charge number in the region of Z ≥ 112 is strongly complicated in cold-fusion reactions by a sharp decrease in the cross section of a compound nucleus formation in the entrance channel because of superiority of quasifission in the competition with complete fusion. Two favorable circumstances contributed to the success of the experiments aimed at the synthesis of the Z = 113–118 elements and performed at the Laboratory of Nuclear Reactions at the Joint Institute for Nuclear Research: large cross sections for the production of a compound nucleus, which are characteristic of hot-fusion reactions, and an increase in the fission barrier for nuclei toward the stability island. The factor that complicates the formation of a compound nucleus in cold-fusion reactions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号