首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
讨论了一种求解数值积分的改进算法,其基本思想是:基于样条基函数的神经网络模型,应用权值直接确定法构造样条基函数,从而逼近被积函数.讨论了数值积分定理及其推论,给出了具体算例检验算法的可行性和优越性.数值结果表明,该算法具有较高的计算精度和较快的计算速度,而且不需要知道被积函数的解析表达式,只需知道被积函数的离散数据便可求得积分值,因此在工程领域中有较大的应用价值.  相似文献   

2.
分析了二维问题边界元法3节点二次单元的几何特征,区分和定义了源点相对高阶单元的Ⅰ型和Ⅱ型接近度.针对二维位势问题高阶边界元中奇异积分核,构造出具有相同Ⅱ型几乎奇异性的近似核函数,在几乎奇异积分单元上分离出积分核中主导的奇异函数部分.原积分核扣除其近似核函数后消除几乎奇异性,成为正则积分核函数,并采用常规Gauss数值方法计算该正则积分;对奇异核函数的积分推导出解析公式,从而建立了一种新的边界元法高阶单元几乎奇异积分半解析算法.应用该算法计算了二维薄体结构温度场算例,计算结果表明高阶单元半解析算法能充分发挥边界元法优势,显著提高计算精度.  相似文献   

3.
1引 言积分的计算是自然科学中的一个基本问题.当积分的精确值不能求出时,数值积分就变得越来越重要了.数值积分的基本思想是直接利用被积函数(及其导数)在若干点处的函数值作线性组合得到积分的近似值.外推算法是一种可以提高数值计算精度的技巧,它利用几个精度较低的近似值作线性组合得到精度较高的近似值.定积分的复化求积公式及其外推算法可见[1]-[7],二重积分的复化求积公式可见[8,9,10],三重积分的复化求积公式可见[11,12].  相似文献   

4.
考虑Beta函数偏导数的计算以及与此相关的广义积分的高精度快速计算问题.首先将Beta函数B(x,y)的定义扩展到整个复平面上,并建立了在整个复平面上Beta函数B(x,y)的偏导数的递推公式.对许多广义积分我们给出Beta函数偏导数的表示形式,因而利用Beta函数的偏导数计算这些广义积分.数值计算表明,算法无论从计算精度还是计算速度,远好于数值积分.另外,得到了B_(p,q)(x,y)存在闭形式的条件,并给出一些广义积分的闭形式.  相似文献   

5.
钢铁企业中变压器的投切往往都是根据工作人员的经验而操作进行的,忽略了投切时机对于变压器损耗的影响.考虑到钢铁企业在电力负荷中占有很大的比重,所以投切不恰当而产生的费用是不可忽视的.针对上述问题,提出一种基于全局人工鱼群算法的变压器投切控制方法,根据钢铁企业变压器实际参数,计算出变电站不同运行情况下的临界负载量,通过结合实际负荷情况确定变压器投切点;全局人工鱼群算法具有较快的收敛速度,可以用于解决有实时性要求的问题.以最终节电效益用作为目标函数,基于全局人工鱼群算法得到最优投切方案.最后以某钢铁企业变压器投切为例,验证了所提方法的有效性.  相似文献   

6.
基于紧支撑样条小波函数插值与定积分的思想,给出了由紧支撑样条小波插值函数构造数值积分公式的方法.并将该方法应用于二次、三次、四次和五次紧支撑样条小波函数,得到了相应的数值积分公式.最后,通过数值例子验证,发现该方法得到的数值积分公式是准确的,且具有较高精度.  相似文献   

7.
给出一种求解第二类Fredholm和Volterra积分方程的数值算法,算法在数值积分技术的基础上使用Monte Carlo随机模拟方法求积分方程的近似解.通过数值例子证明了该算法是有效的.  相似文献   

8.
关于九参数拟协调板元   总被引:5,自引:2,他引:3  
石钟慈 《计算数学》1988,10(1):100-106
1980年以来,唐立民等提出一种拟协调元法,用来构造椭圆型方程的离散格式.粗略地讲,该法将每个单元上的能量表达式所含导数项的面积分(假设问题二维的),用格林公式转化为单元边界上的线积分,然后采用某种数值积分,将线积分进行离散.对只含函数项的面积分,也用相应的数值积分进行离散.用此法计算单元刚度阵,比较简单、灵活.  相似文献   

9.
在传统L ev in方法与新F ilon型方法的基础上,本文提出了一种求解非规则区域下的二重高振荡函数数值积分方法,通过利用L ev in匹配法将二重积分化为一重积分,并避免了对复杂的m om en ts的求解,能提高计算的效率,且有很高的求积精度.  相似文献   

10.
针对传统MUSIC算法运算量过大以及低信噪比下分辨率差的问题,提出将改进人工鱼群算法与MUSIC的谱峰搜索相结合,利用鱼群觅食和追逐来对解空间进行高效搜索,从而保证算法收敛的快速性和全局性.聚群的存在促使少量陷于局部最优解的人工鱼向着全局最优解的方向靠拢,提高了鱼群对不利环境的自适应性,也增强了算法的稳定性.与此同时,改进人工鱼群算法在一定程度上加快了后期收敛速度,提高了算法的估计性能.实验结果表明在低信噪比时方法相较于MUSIC而言具有更好的估计性能,并且大大减少了运算量,保证了算法的实时性.  相似文献   

11.
The present work proposes a numerical method to obtain an approximate solution of non-linear weakly singular Fredholm integral equations. The discrete Galerkin method in addition to thin-plate splines established on scattered points is utilized to estimate the solution of these integral equations. The thin-plate splines can be regarded as a type of free shape parameter radial basis functions which create an efficient and stable technique to approximate a function. The discrete Galerkin method for the approximate solution of integral equations results from the numerical integration of all integrals in the method. We utilize a special accurate quadrature formula via the non-uniform composite Gauss-Legendre integration rule and employ it to compute the singular integrals appeared in the scheme. Since the approach does not need any background meshes, it can be identified as a meshless method. Error analysis is also given for the method. Illustrative examples are shown clearly the reliability and efficiency of the new scheme and confirm the theoretical error estimates.  相似文献   

12.
In this paper, stochastic operational matrix of integration based on delta functions is applied to obtain the numerical solution of linear and nonlinear stochastic quadratic integral equations (SQIEs) that appear in modelling of many real problems. An important advantage of this method is that it dose not need any integration to compute the constant coefficients. Also, this method can be utilized to solve both linear and nonlinear problems. By using stochastic operational matrix of integration together collocation points, solving linear and nonlinear SQIEs converts to solve a nonlinear system of algebraic equations, which can be solved by using Newton's numerical method. Moreover, the error analysis is established by using some theorems. Also, it is proved that the rate of convergence of the suggested method is O(h2). Finally, this method is applied to solve some illustrative examples including linear and nonlinear SQIEs. Numerical experiments confirm the good accuracy and efficiency of the proposed method.  相似文献   

13.
Summary A new method for the numerical integration of very high dimensional functions is introduced and implemented based on the Metropolis' Monte Carlo algorithm. The logarithm of the high dimensional integral is reduced to a 1-dimensional integration of a certain statistical function with respect to a scale parameter over the range of the unit interval. The improvement in accuracy is found to be substantial comparing to the conventional crude Monte Carlo integration. Several numerical demonstrations are made, and variability of the estimates are shown.  相似文献   

14.
A general numerical method is proposed to compute nearly singular integrals arising in the boundary integral equations (BIEs). The method provides a new implementation of the conventional distance transformation technique to make the result stable and accurate no matter where the projection point is located. The distance functions are redefined in two local coordinate systems. A new system denoted as (α,β) is introduced here firstly. Its implementation is simpler than that of the polar system and it also performs efficiently. Then a new distance transformation is developed to remove or weaken the near singularities. To perform integration on irregular elements, an adaptive integration scheme is applied. Numerical examples are presented for both planar and curved surface elements. The results demonstrate that our method can provide accurate results even when the source point is very close to the integration element, and can keep reasonable accuracy on very irregular elements. Furthermore, the accuracy of our method is much less sensitive to the position of the projection point than the conventional method.  相似文献   

15.
In this work, we propose an extension of the algebraic formulation of the Tau method for the numerical solution of the nonlinear Volterra-Hammerstein integral equations. This extension is based on the operational Tau method with arbitrary polynomial basis functions for constructing the algebraic equivalent representation of the problem. This representation is an special semi lower triangular system whose solution gives the components of the vector solution. We will show that the operational Tau matrix representation for the integration of the nonlinear function can be represented by an upper triangular Toeplitz matrix. Finally, numerical results are included to demonstrate the validity and applicability of the method and some comparisons are made with existing results. Our numerical experiments show that the accuracy of the Tau approximate solution is independent of the selection of the basis functions.  相似文献   

16.
This paper presents a computational technique for the solution of the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations. The method is based on the composite collocation method. The properties of hybrid of block-pulse functions and Lagrange polynomials are discussed and utilized to define the composite interpolation operator. The estimates for the errors are given. The composite interpolation operator together with the Gaussian integration formula are then used to transform the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations into a system of nonlinear equations. The efficiency and accuracy of the proposed method is illustrated by four numerical examples.  相似文献   

17.
This paper applies He’s homotopy perturbation method to compute a large variety of integral transforms. The Esscher, Fourier, Hankel, Laplace, Mellin and Stieljes integrals transforms are particular cases of our generalized integral transform. Our method is of practical importance in order to derive new integration formulae, to approximate certain difficult integrals as well as to calculate the expectation of certain nonlinear functions of random variable.  相似文献   

18.
This paper presents a volume integral equation method for an electromagnetic scattering problem for three-dimensional Maxwell's equations in the presence of a biperiodic, anisotropic, and possibly discontinuous dielectric scatterer. Such scattering problem can be reformulated as a strongly singular volume integral equation (i.e., integral operators that fail to be weakly singular). In this paper, we firstly prove that the strongly singular volume integral equation satisfies a Gårding-type estimate in standard Sobolev spaces. Secondly, we rigorously analyze a spectral Galerkin method for solving the scattering problem. This method relies on the periodization technique of Gennadi Vainikko that allows us to efficiently evaluate the periodized integral operators on trigonometric polynomials using the fast Fourier transform (FFT). The main advantage of the method is its simple implementation that avoids for instance the need to compute quasiperiodic Green's functions. We prove that the numerical solution of the spectral Galerkin method applied to the periodized integral equation converges quasioptimally to the solution of the scattering problem. Some numerical examples are provided for examining the performance of the method.  相似文献   

19.
In this paper we study convergence and computation of interpolatory quadrature formulas with respect to a wide variety of weight functions. The main goal is to evaluate accurately a definite integral, whose mass is highly concentrated near some points. The numerical implementation of this approach is based on the calculation of Chebyshev series and some integration formulas which are exact for polynomials. In terms of accuracy, the proposed method can be compared with rational Gauss quadrature formula.  相似文献   

20.
Allan Berele 《代数通讯》2013,41(3):1123-1133
We develop a new integration method based on hook Schur functions instead of Schur functions to compute the cocharacters of matrices. We then use this method to compute some of the multiplicities in the cocharacter sequence of 3 × 3 matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号