首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
通过开环共聚合成了由D,L-丙交酯、碳酸丙二酯和聚乙二醇构成的两亲性嵌段共聚物(PETLA),研究了PETLA胶束化及药物控释行为.嵌段共聚物和胶束通过核磁共振(1H-NMR)、荧光分光光度计、凝胶渗透色谱(GPC)、动态光散射(DLS)、透射电镜(TEM)和紫外光谱(UV)表征.实验结果发现临界胶束浓度随共聚物疏水链段长度增加而减小,胶束直径随疏水链段长度增加而增大.透射电镜照片表明载药胶束MT1直径为30~40nm,呈规则球形.体外释药表明9-NC以可控方式释放,突释后药物释放速率接近零级恒速.  相似文献   

2.
In this work, we aimed to study the association and interaction behavior of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) block copolymers grafted with poly(vinylpyrrolidone). Critical micellization concentrations were determined using fluorescent probes (pyrene) and critical micellization temperatures characterizing temperature-dependent transitions from monomers to multimolecular micelles were measured. The thermal responsiveness of the copolymer is not affected by the grafting. The hydrodynamic radius of the graft copolymer micelles is found to be greater than that of the original copolymer micelles. The graft copolymer is found to form anisotropic aggregates. The structure of the graft copolymer micelles is less disrupted by the anionic surfactant sodium dodecyl sulfate, compared to the ungraft copolymer.  相似文献   

3.
Biodegradable and amphiphilic triblock copolymers poly(ethyl ethylene phosphate)-poly(3-hydroxy-butyrate)-poly(ethyl ethylene phosphate) (PEEP-b-PHB-b-PEEP) have been successfully synthesized through ring-opening polymerization. The structures are confirmed by gel permeation chromatography and NMR analyses. Crystallization investigated by X-ray diffraction reveals that the block copolymer with higher content of poly(ethyl ethylene phosphate) (PEEP) is more amorphous, showing decreased crystallizability. The obtained copolymers self-assemble into biodegradable nanoparticles with a core-shell micellar structure in aqueous solution, verified by the probe-based fluorescence measurements and transmission electronic microscopy (TEM) observation. The hydrophobic poly(3-hydroxybutyrate) (PHB) block serves as the core of the micelles and the micelles are stabilized by the hydrophilic PEEP block. The size and size distribution are related to the compositions of the copolymers. Paclitaxel (PTX) has been encapsulated into the micelles as a model drug and a sustained drug release from the micelles is observed. MTT assay also demonstrates that the block copolymers are biocompatible, rendering these copolymers attractive for drug delivery. Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20060358036)  相似文献   

4.
采用耗散粒子动力学(Dissipative particle dynamics, DPD)模拟方法研究了三嵌段共聚物聚氧乙烯-聚氧丙烯-聚氧乙烯(PEO-PPO-PEO)的胶束化和凝胶化行为. 通过模拟得到了F127(EO99PO65EO99)水溶液的临界胶束浓度和临界凝胶浓度. 结果发现, 在298 K、 质量分数低于40%时, F127水溶液中形成的胶束形状均为球形. 此外,进一步研究了亲水嵌段长度对胶束结构及凝胶形成浓度的影响, 结果发现, 亲水嵌段越短, 越有利于长椭球状胶束的形成, 而临界凝胶浓度随着亲水嵌段PEO长度的增加而降低.  相似文献   

5.
两亲嵌段共聚物可以在水溶液中自组装形成亲水性链段为外壳、疏水性链段为内核的胶束,这种胶束能够用作药物载体而引起人们极大的关注。本文综述了两亲嵌段共聚物胶束用作医用材料的研究进展,主要内容包括医用两亲嵌段共聚物的种类,胶束化,以及用作诊断试剂载体、药物缓释载体、靶向载体等。两亲嵌段共聚物胶束用作磁共振造影剂载体有利于肿瘤的诊断,用作药物缓释载体可以有效增溶难溶性抗肿瘤药物,延长药物在体内的血液循环时间。此外,通过对胶束表面进行修饰或者施加外场,还可以实现靶向功能。因此,两亲嵌段共聚物胶束在医用材料领域有着广阔的发展前景。  相似文献   

6.
This paper reports the studies on micelle formation of new biodegradable amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer with various PHB and PEO block lengths in aqueous solution. Transmission electron microscopy showed that the micelles took an approximately spherical shape with the surrounding diffuse outer shell formed by hydrophilic PEO blocks. The size distribution of the micelles formed by one triblock copolymer was demonstrated by dynamic light scattering technique. The critical micellization phenomena of the copolymers were extensively studied using the pyrene fluorescence dye absorption technique, and the (0,0) band changes of pyrene excitation spectra were used as a probe for the studies. For the copolymers studied in this report, the critical micelle concentrations ranged from 1.3 x 10(-5) to 1.1 x 10(-3) g/mL. For the same PEO block length of 5000, the critical micelle concentrations decreased with an increase in PHB block length, and the change was more significant in the short PHB range. It was found that the micelle formation of the biodegradable amphiphilic triblock copolymers consisting of poly(beta-hydroxyalkanoic acid) and PEO was relatively temperature-insensitive, which is quite different from their counterparts consisting of poly(alpha-hydroxyalkanoic acid) and PEO.  相似文献   

7.
An out line and summary of literature studies on interactions between different types of amphiphilic copolymer micelles with surfactants has been given. This field of research is still emerging and it is difficult presently to make generalisations on the effects of surfactants on the copolymer association. The effects are found to be varied depending upon the nature and type of hydrophobic (hp) core and molecular architecture of the copolymers and the hydrocarbon chain length and head group of surfactants. The information available on limited studies shows that both anionic and cationic surfactants (in micellar or molecular form) equally interact strongly with the associated and unassociated forms of copolymers. The beginning of the interaction is typically displayed as critical aggregation concentration (CAC), which lies always below the critical micelle concentration of the respective surfactant. The surfactants first bind to the hydrophobic core of the copolymer micelles followed by their interaction with the hydrophilic (hl) corona parts. The extent of binding highly depends upon the nature, hydropobicity of the copolymer molecules, length of the hydrocarbon tail and nature of the head group of the surfactant. The micellization of poly(ethylene oxide) (PEO)–poly(propylene oxide) (PPO)–poly(ethylene oxide) was found to be suppressed by the added surfactants and at higher surfactant concentrations, the block copolymer micelles get completely demicellized. This effect was manifested itself in the melting of liquid crystalline phases in the high copolymer concentrations. However, no such destabilization was found for the micelles of polystyrene (PS)–poly(ethylene oxide) copolymers in water. On the contrary, the presence of micellar bound surfactant associates resulted in to large super micellar aggregates through induced intra micellar interactions. But with the change in the hydrophobic part from polystyrene to poly(butadiene) (PB) in the copolymer, the added surfactants not only reduced the micellar size but also transformed cylindrical micelles to spherical ones. The mixtures in general exhibited synergistic effects. So varied association responses were noted in the mixed solutions of surfactants and copolymers.  相似文献   

8.
聚氧乙烯-聚氧丙烯-聚氧乙烯三嵌段共聚物因其具有良好的生物相容性和蛋白抗性,近年来在生物医用材料中的应用越来越广泛.聚氧乙烯-聚氧丙烯-聚氧乙烯水溶液具有温度敏感的胶束化和热可逆凝胶化特点,被认为是一种具有许多优点的药物传输载体,药物与胶束的核心结合增加了药物的溶解性、代谢稳定性和体内循环时间.本文对聚氧乙烯-聚氧丙烯-聚氧乙烯在生物医用方面的研究进展进行了综述,并重点介绍了其在药物传输载体,组织工程等方面的研究进展.  相似文献   

9.
嵌段结构对两亲嵌段共聚物水溶液行为的影响   总被引:2,自引:1,他引:2  
在合成了二种具有相同组成不同嵌段结构排布的共聚物基础上对它们溶液的物理化学行为用荧光探针的方法进行了研究,结果表明:由于结构排布的不同其物理化学行为有着较大的差异,三嵌段结构的共聚物较二嵌段者更易于形成胶束体系,而二嵌段共聚物则易于发生凝胶化,对上述结果进行讨论和解释.  相似文献   

10.
A series of poly(?‐caprolactone/glycolide)‐poly(ethylene glycol) (P(CL/GA)‐PEG) diblock copolymers were prepared by ring opening polymerization of a mixture of ?‐caprolactone and glycolide using mPEG as macro‐initiator and stannous octoate as catalyst. Self‐assembled micelles were prepared from the copolymers using nanoprecipitation method. The micelles were spherical in shape. The micelle size was larger for copolymers with longer PEG blocks. In contrast, the critical micelle concentration of copolymers increased with decreasing the overall hydrophobic block length. Drug loading and drug release studies were performed under in vitro conditions, using paclitaxel as a hydrophobic model drug. Higher drug loading was obtained for micelles with longer poly(ε‐caprolactone) blocks. Faster drug release was obtained for micelles of mPEG2000 initiated copolymers than those of mPEG5000 initiated ones. Higher GA content in the copolymers led to faster drug release. Moreover, drug release rate was enhanced in the presence of lipase from Pseudomonas sp., indicating that drug release is facilitated by copolymer degradation. The biocompatibility of copolymers was evaluated from hemolysis, dynamic clotting time, and plasma recalcification time tests, as well as MTT assay and agar diffusion test. Data showed that copolymer micelles present outstanding hemocompatibility and cytocompatibility, thus suggesting that P(CL/GA)‐PEG micelles are promising for prolonged release of hydrophobic drugs.  相似文献   

11.
Novel pH sensitive biodegradable block copolymers (MPEG-PDLLA-OSM) composed of mono-methoxy poly(ethylene glycol) (MPEG), poly (D,L-lactide) (PDLLA) and sulfamethazine oligomer (OSM) were synthesized via ring-opening polymerization and a dicyclohexyl carboimide (DCC) coupling reaction. These copolymers had a relatively low critical micelle concentration (CMC) due to the strong hydrophobic properties of non-ionized OSM at pH 7.0. Also, the pH sensitive block copolymers showed the micelle-unimer transition due to the ionization-non-ionization of OSM in the pH range (pH 7.2-8.4) above the CMC. Due to the pH sensitive properties of the block copolymer, the hydrophobic drug paclitaxel (PTX) was incorporated into a pH sensitive block copolymer micelle by the pH induced micellization method, without using an organic solvent. The block copolymer micelle prepared by pH induced micellization showed a relatively high PTX loading efficiency, and good stability for 2 d at 37 degrees C. Furthermore, the PTX loaded micelle showed a sustained release of PTX with a small burst in vitro over 2 d. The present results suggest that the pH induced micellization method due to the micelle-unimer transition of the pH sensitive block copolymer would be a novel and valuable drug incorporation tool for hydrophobic and protein drugs, since no organic solvent is involved in the formulation.  相似文献   

12.
合成了一系列甲氧基聚乙二醇(MPEG)和聚(2-甲氧基乙基亚乙基磷酸酯)(PMOEEP)的两嵌段聚合物MPEG-b-PMOEEP,并研究了该嵌段聚合物对疏水性化疗药物紫杉醇(PTX)的增溶效果.以MPEG为引发剂、异辛酸亚锡为催化剂,对五元环状磷酸酯单体2-甲氧基乙氧基-1,3,2-二氧磷杂环戊烷(MOEEP)进行开环...  相似文献   

13.
In this article, we report the first micellization study of amphiphilic copolymers composed of bacterial medium chain length poly(3-hydroxyalkanoates) (mcl-PHAs). A series of diblock copolymers based on fixed poly(ethylene glycol) (PEG) block (5000 g mol(-1)) and a varying poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate) (PHOHHx) segment (1500-7700 g mol(-1)) have been synthesized using "click" chemistry. These copolymers self-assembled to form micelles in aqueous media. The influence of PHOHHx block molar mass on the hydrodynamic size and on the critical micelle concentration (CMC) has been studied using dynamic light scattering and fluorescence spectroscopy, respectively. With increasing PHOHHx length, narrowly distributed micelles with diameters ranging from 44 to 90 nm were obtained, with extremely low CMC (up to 0.85 mg/L). Cryogenic transmission electron microscopy (Cryo-TEM) showed that micelles took on a spherical shape and exhibited narrow polydispersity. Finally, the colloidal stability of the micelles against physiological NaCl concentration has been demonstrated, suggesting they are promising candidates for drug delivery applications.  相似文献   

14.
In this paper we present the effect of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer micelles and their hydrophobicity on the stabilization of gold nanoparticles. Gold nanoparticles were prepared by a method developed by Sakai et al. (Sakai, T.; Alexandridis, P. Langmuir 2004, 20, 8426). An absorption centered at 300-400 nm in time-dependent UV spectra provided evidence that the very first step of the synthesis was to form primary gold clusters. Then the gold clusters grew in size and were stabilized by block copolymer micelles. The stabilization capacities of the micelles were modulated by tuning the block copolymer concentration and composition and by adding salts. With good stabilization, gold particles were spherical and uniform in size with a diameter of 5-10 nm. Otherwise they were aggregates with irregular shapes such as triangular, hexagonal, and rodlike. The presence of a small amount of NaF significantly increased the stabilization capacity of the micelles and consequently modified the quality of the gold particles. Using FTIR and 1H NMR spectroscopy, micellization of the block copolymers and hydrophobicity of the micelles were proven very important for the stabilization. A higher hydrophobicity of the micelle cores was expected to favor the entrapment of primary gold clusters and the stabilization of gold nanoparticles.  相似文献   

15.
A novel micellization induced by photolysis was attained using a poly(4-tert-butoxystyrene)-block-polystyrene diblock copolymer (PBSt-b-PSt). BSt-b-PSt showed no self-assembly in dichloromethane and existed as isolated copolymers. Dynamic light scattering demonstrated that the copolymer produced spherical micelles in dichloromethane by the irradiation with a high-pressure mercury lamp in the presence of photoacid generators, such as bis(alkylphenyl)iodonium hexafluorophosphate (BAI), diphenyliodonium hexafluorophosphate (DPI), and triphenylsulfonium triflate (TPS). The irradiation time to promote the micellization increased in the order of BAI < DPI < TPS, depending on the UV absorption intensity of the photoacid generators. The efficiency to promote the micellization was also dependent on the block length of the copolymer. Under an identical PBSt block length, the copolymer with the shorter PSt block length more easily formed micelles. The 1H NMR analysis confirmed that the PBSt-b-PSt copolymer was converted into poly(4-vinyl phenol)-block-PSt, resulting in micelles by self-assembly.  相似文献   

16.
We present a scattering study of a selectively deuterated micelle-forming diblock copolymer. The copolymer comprises a partially deuterated polystyrene (d,h-PS) block and an imidazolium-functionalized PS (IL) block. In toluene solutions, the copolymers assemble into elongated micelles where the IL block forms the micelle core. Through dynamic light scattering (DLS) measurements, we obtain the overall size of the micelles. In our small-angle neutron scattering (SANS) studies, we use contrast matching to characterize the IL core and the PS shell of the micelles independently. The PS block forming the micelle shell exhibits either a starlike or brushlike conformation depending upon the size of the core to which it is tethered. We find the IL block to be in an extended conformation, driving the formation of slightly elongated and relatively stiff micelle cores. The elongated micelle core cross-sectional radius and length depend linearly on the length of the IL block. We find that the micelles can sequester a few water molecules for each IL repeat unit; the addition of water slightly increases the cross section of the elongated micelles.  相似文献   

17.
Miktoarm star triblock copolymers mu-[poly(ethylethylene)][poly(ethylene oxide)][poly(perfluoropropylene oxide)] self-assemble in dilute aqueous solution to give multicompartment micelles with the cores consisting of discrete poly(ethylethylene) and poly(perfluoropropylene oxide) domains. Tetrahydrofuran is a selective solvent for both the poly(ethylethylene) and poly(ethylene oxide) blocks, and thus in tetrahydrofuran mixed corona micelles are favored with poly(perfluoropropylene oxide) cores. The introduction of tetrahydrofuran into water induces an evolution from multicompartment micelles to mixed corona [poly(ethylethylene) + poly(ethylene oxide)] micelles, as verified by dynamic light scattering and nuclear magnetic resonance spectroscopy. A mixed solvent containing 60 wt % tetrahydrofuran corresponds to the transition point, as verified by analysis of a poly(ethylethylene)-poly(ethylene oxide) diblock copolymer in the same solvent mixtures. Furthermore, cryogenic transmission electron microscopy suggests that, as the poly(ethylethylene) block transitions from the core to the corona, the micelle morphologies evolve from disks to oblate ellipsoid micelles (with some vesicles), with worms and spheres evident at intermediate compositions.  相似文献   

18.
两亲性嵌段共聚物PS-b-PMAA的合成与胶束化行为研究   总被引:7,自引:2,他引:5  
华慢  杨伟  薛乔  陈明清  刘晓亚  杨成 《化学学报》2005,63(7):631-636
利用原子转移自由基聚合法(ATRP)得到了分子量可控、分子量分布接近1.1的聚苯乙烯-b-聚甲基丙烯酸叔丁酯(PS-b-PtBMA)嵌段共聚物, 进而在酸性条件下由水解反应得到了两亲性的聚苯乙烯-b-聚甲基丙烯酸 (PS-b-PMAA)嵌段共聚物.用GPC, FTIR和1H-NMR等对产物的分子量和组成进行了表征.使PS-b-PMAA在选择性溶剂中进行自组装, 通过激光光散射和透射电子显微镜研究了影响其胶束化行为的因素与胶束形态, 并初步探讨了胶束形成的机理, 发现通过控制嵌段共聚物的链段长度之比可得到空心球形的高分子胶束.  相似文献   

19.
Amphiphilic block copolymers composed of D,L-lactide, trimethylene carbonate and the methoxy poly (ethylene glycol) (PETLA) were synthesized with ringopening copolymerization. Studies on the micellization and drug-controlled release behavior of PETLA were performed. Both of the copolymers and the micelles were characterized with the methods of 1H nuclear magnetic resonance (1H-NMR), fluorescence spectroscopy, gel permeation chromatographic (GPC), dynamic light scattering (DLS), transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy (UV). As a result, the critical micelle concentration of the copolymer was decreased with the increase of the hydrophobic chain length. DLS results indicated the diameters of the micelle were increased with increasing hydrophobic length. TEM photographs illustrated that micelles MT1 were regularly spherical with the diameter from 30 nm to 40 nm. Taking 9-nitro-20(S)-camptothecin (9-NC) for the model drug, the release profiles in vitro show that the release behavior from micelles was controllable and nearly in zero order after the initial burst release. __________ Translated from Acta Polymerica Sinica, 2008, 2 (in Chinese)  相似文献   

20.
Two new poly(ethylene oxide)-poly(styrene oxide) triblock copolymers (PEO-PSO-PEO) with optimized block lengths selected on the basis of previous studies were synthesized with the aim of achieving a maximal solubilization ability and a suitable sustained release, while keeping very low material expense and excellent aqueous copolymer solubility. The self-assembling and gelling properties of these copolymers were characterized by means of light scattering, fluorescence spectroscopy, transmission electron microscopy, and rheometry. Both copolymers formed spherical micelles (12-14 nm) at very low concentrations. At larger concentration (>25 wt%), copolymer solutions showed a rich phase behavior, with the appearance of two types of rheologically active (more viscous) fluids and of physical gels depending on solution temperature and concentration. The copolymer behaved notably different despite their relatively similar block lengths. The ability of the polymeric micellar solutions to solubilize the antifungal drug griseofulvin was evaluated and compared to that reported for other structurally-related block copolymers. Drug solubilization values up to 55 mg g−1 were achieved, which are greater than those obtained by previously analyzed poly(ethylene oxide)-poly(styrene oxide), poly(ethylene oxide)-poly(butylene oxide), and poly(ethylene oxide)-poly(propylene oxide) block copolymers. The results indicate that the selected SO/EO ratio and copolymer block lengths were optimal for simultaneously achieving low critical micelle concentrations (cmc) values and large drug encapsulation ability. The amount of drug released from the polymeric micelles was larger at pH 7.4 than at acidic conditions, although still sustained over 1 day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号