首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DFT calculations (B3LYP/LANL2DZ/6-31 G*) were used to investigate the ways in which 1-methyl-4-phenyl-1-azabuta-1,3-diene and 4-phenyl-1-oxabuta-1,3-diene bind to a Fe(CO)(4) moiety. As possible coordination modes, eta(2)-coordination across the C=C or C=N/C=O bond, sigma-coordination to the lone pair of the heteroatom, or eta(3)-coordination through the C=C-C or the N=C-C/O=C-C moiety were considered. The latter forms involve coupling of the non-coordinated atom of the heterodiene with one of the carbonyl ligands to an acyl species. The calculated geometric parameters of all structures compare well with X-ray crystallographic data of similar complexes. The species in which the ligand is transoid and sigma-coordinated is lowest in energy, for both compounds studied. However, the eta(2)-alkene bound 1-oxabuta-1,3-diene complex is practically equal in energy to the sigma-transoid form and thus competes. This agrees with experimental observations that the heterodiene is sigma-bonded in Fe(CO)(4)(1-methyl-4-phenyl-1-azabuta-1,3-diene) but eta(2)-coordinated in Fe(CO)(4)(4-phenyl-1-oxabuta-1,3-diene). The solvent dependence was estimated from single point PCM calculations, for CH(2)Cl(2) as solvent. For the 1-azabuta-1,3-diene complexes, the relative energies of eta(2)-olefin and eta(3)-allyl forms are inverted, with the eta(3)-allyl form being more stable in polar solvents. The 1-oxabuta-1,3-diene complexes in their eta(2)-olefin and sigma-O forms change order of relative energy, and conversion to the sigma-O form is expected in a polar medium for these complexes. Calculated IR vibrational stretching frequencies of the carbonyl ligands and the C[double bond, length as m-dash]N/C[double bond, length as m-dash]O bond were compared with experimental data, to produce the best fits for the sigma-transoid form of Fe(CO)(4)(1-methyl-4-phenyl-1-azabuta-1,3-diene) and eta(2)-olefin bonded Fe(CO)(4)(4-phenyl-1-oxabuta-1,3-diene). These results are again consistent with the experiment and show that the DFT method applied in this work can be used as an aid for structural validation.  相似文献   

2.
The characters, dynamics, and relaxation pathways of low-lying excited states of the complexes [W(CO)(5)L] [L = 4-cyanopyridine (pyCN) and piperidine (pip)] were investigated using theoretical and spectroscopic methods. DFT calculations revealed the delocalized character of chemically and spectroscopicaly relevant molecular orbitals and the presence of a low-lying manifold of CO pi-based unoccupied molecular orbitals. Traditional ligand-field arguments are not applicable. The lowest excited states of [W(CO)(5)(pyCN)] are W --> pyCN MLCT in character. They are closely followed in energy by W --> CO MLCT states. Excitation at 400 or 500 nm populates the (3)MLCT(pyCN) excited state, which was characterized by picosecond time-resolved IR and resonance Raman spectroscopy. Excited-state vibrations were assigned using DFT calculations. The (3)MLCT(pyCN) excited state is initially formed highly excited in low-frequency vibrations which cool with time constants between 1 and 20 ps, depending on the excitation wavelength, solvent, and particular high-frequency nu(CO) or nu(CN) mode. The lowest excited states of [W(CO)(5)(pip)] are W --> CO MLCT, as revealed by TD-DFT interpretation of a nanosecond time-resolved IR spectrum that was measured earlier in a low-temperature glass (Johnson, F. P. A.; George, M. W.; Morrison, S. L.; Turner, J. J. J. Chem. Soc., Chem. Commun. 1995, 391-393). MLCT(CO) excitation involves transfer of electron density from the W atom and, to a lesser extent, the trans CO to the pi orbitals of the four cis CO ligands. Optical excitation into MLCT(CO) transition of either complex in fluid solution triggers femtosecond dissociation of a W-N bond, producing [W(CO)(5)(solvent)]. It is initially vibrationally excited both in nu(CO) and anharmonicaly coupled low-frequency modes. Vibrational cooling occurs with time constants of 16-22 ps while the intramolecular vibrational energy redistribution from the v = 1 nu(CO) modes is much slower, 160-220 ps. No LF excited states have been found for the complexes studied in a spectroscopically relevant range up to 6-7 eV. It follows that spectroscopy, photophysics, and photochemistry of [W(CO)(5)L] and related complexes are well described by an interplay of close-lying MLCT(L) and MLCT(CO) excited states. The high-lying LF states play only an indirect photochemical role by modifying potential energy curves of MLCT(CO) states, making them dissociative.  相似文献   

3.
(Sub)picosecond transient absorption (TA) and time-resolved infrared (TRIR) spectra of the cluster [Os3(CO)10-(AcPy-MV)]2+ (the dication AcPy-MV = AcPy-MV2+ = [2-pyridylacetimine-N-(2-(1'-methyl-4,4'-bipyridine-1,1'-diium-1-yl)ethyl)](PF6)2) (1(2+)) reveal that photoinduced electron transfer to the electron-accepting 4,4'-bipyridine-1,1'-diium (MV2+) moiety competes with the fast relaxation of the initially populated sigmapi excited state of the cluster to the ground state and/or cleavage of an Os-Os bond. The TA spectra of cluster 1(2+) in acetone, obtained by irradiation into its lowest-energy absorption band, show the characteristic absorptions of the one-electron-reduced MV*+ unit at 400 and 615 nm, in accordance with population of a charge-separated (CS) state in which a cluster-core electron has been transferred to the lowest pi orbital of the remote MV2+ unit. This assignment is confirmed by picosecond TRIR spectra that show a large shift of the pilot highest-frequency nu(CO) band of 1(2+) by ca. +40 cm(-1), reflecting the photooxidation of the cluster core. The CS state is populated via fast (4.2 x 10(11) s(-1)) and efficient (88%) oxidative quenching of the optically populated sigmapi excited state and decays biexponentially with lifetimes of 38 and 166 ps (1.2:1 ratio) with a complete regeneration of the parent cluster. About 12% of the cluster molecules in the sigmapi excited state form long-lived open-core biradicals. In strongly coordinating acetonitrile, however, the cluster core-to-MV2+ electron transfer in cluster 1(2+) results in the irreversible formation of secondary photoproducts with a photooxidized cluster core. The photochemical behavior of the [Os3(CO)10(alpha-diimine-MV)]2+ (donor-acceptor) dyad can be controlled by an externally applied electronic bias. Electrochemical one-electron reduction of the MV2+ moiety prior to the irradiation reduces its electron-accepting character to such an extent that the photoinduced electron transfer to MV(*+) is no longer feasible. Instead, the irradiation of reduced cluster 1(*+) results in the reversible formation of an open-core zwitterion, the ultimate photoproduct also observed upon irradiation of related nonsubstituted clusters [Os3(CO)10(alpha-diimine)] in strongly coordinating solvents such as acetonitrile.  相似文献   

4.
Ultrafast photochemistry of the complexes trans(X,X)-[Ru(X)(2)(CO)(2)(bpy)] (X = Cl, Br, I) was studied in order to understand excited-state reactivity of equatorial CO ligands, coordinated trans to the 2,2'-bipyridine ligand (bpy). TD-DFT calculations have identified the lowest electronic transitions and singlet excited states as mixed X -->bpy/Ru --> bpy ligand to ligand/metal to ligand charge transfer (LLCT/MLCT). Picosecond time-resolved IR spectroscopy in the region of nu(CO) vibrations has revealed that, for X = Cl and Br, subpicosecond CO dissociation is accompanied by bending of the X-Ru-X moiety, producing a pentacoordinated intermediate trans(X,X)-[Ru(X)(2)(CO)(bpy)]. Final movement of an axial halide ligand to the vacant equatorial position and solvent (CH(3)CN) coordination follows with a time constant of 13-15 ps, forming the photoproduct cis(X,X)-[Ru(X)(2)(CO)(CH(3)CN)(bpy)]. For X = I, the optically populated (1)LLCT/MLCT excited state undergoes a simultaneous subpicosecond CO dissociation and relaxation to a triplet IRuI-localized excited state which involves population of an orbital that is sigma-antibonding with respect to the axial I-Ru-I bonds. Vibrationally relaxed photoproduct cis(I,I)-[Ru(I)(2)(CO)(CH(3)CN)(bpy)] is formed with a time constant of ca. 55 ps. The triplet excited state is unreactive, decaying to the ground state with a 155 ps lifetime. The experimentally observed photochemical intermediates and excited states were assigned by comparing calculated (DFT) and experimental IR spectra. The different behavior of the chloro and bromo complexes from that of the iodo complex is caused by different characters of the lowest triplet excited states.  相似文献   

5.
Reaction of allene-substituted cyclohexa- and cyclohepta-1,3-dienes with [PdCl(2)(PhCN)(2)] gave eta(3)-(1,2,3)-cyclohexenyl- and eta(3)-(1,2,3)-cycloheptenylpalladium complexes, respectively, in which C-C bond formation between the allene and the 1,3-diene has occurred. Analysis of the (pi-allyl)palladium complexes by NMR spectroscopy, using reporter ligands, shows that the C-C bond formation has occurred by a trans carbopalladation involving nucleophilic attack by the middle carbon atom of the allene on a (pi-diene)palladium(II) complex. The stereochemistry of the (pi-allyl)palladium complexes was confirmed by benzoquinone-induced stereoselective transformations to allylic acetates.  相似文献   

6.
Herein we describe in detail the bonding properties and electrochemical behavior of the first known triosmium carbonyl clusters with a coordinated redox-active ligand 4,4',5,5'-tetramethyl-2,2'-biphosphinine (tmbp), the phosphorus derivative of 2,2'-bipyridine. The clusters investigated were [Os(3)(CO)(10)(tmbp)] (1) and its derivative [Os(3)(CO)(9)(PPh(3))(tmbp)] (2). The crystal structures of both clusters are compared with those of relevant compounds; they served as the basis for density functional theory (DFT and time-dependent DFT) calculations. The experimental and theoretical data reveal an unexpected and unprecedented bridging coordination mode of tmbp, with each P atom bridging two metal atoms. The tmbp ligand is formally reduced by transfer of two electrons from the triangular cluster core that consequently lacks one of the metal-metal bonds. Both 1 and 2 therefore represent 50e(-) clusters with a coordinated 8e(-) donor, [tmbp](2-). The HOMO and LUMO of 1 and 2 possess a predominant contribution from different pi*(tmbp) orbitals, implying that the lowest energy excited state possesses a significant intraligand character. This is in agreement with the photostability of these clusters. DFT calculations also predict the experimentally observed structure of 1 to be the most stable one in a series of several plausible structural isomers. Stepwise two-electron electrochemical reduction of 1 and 2 results in dissociation of CO and PPh(3), respectively, and formation of the [Os(3)(CO)(9)(tmbp)](2-) ion. The initially produced radical anions of the parent clusters, in which the odd electron is predominantly localized on the tmbp ligand, are sufficiently stable at low temperatures and can be observed with IR spectroelectrochemistry. The electron-deficiency of the cluster core in 1 permits facile electrocatalytic substitution of a CO ligand by tertiary phosphane and phosphite donors.  相似文献   

7.
《Tetrahedron letters》1987,28(29):3361-3362
An efficient cyclo-codimerization between 1,3-diene and non-activatedterminal acetylene has been attained by the catalysis of [Rh(COD)(DPPB)]PF6 to give 1,4-disubstituted cyclohexa-1,3-dienes under mild conditions.  相似文献   

8.
The character and dynamics of the low-lying excited states of [Ru(X)(X')(CO)2(iPr-dab)] (X=X'=Cl or I; X=Me, X'=I; X=SnPh3, X'=Cl; iPr-dab=N, N'-diisopropyl-1,4-diazabutadiene) were studied experimentally by pico- and nanosecond time-resolved IR spectroscopy (TRIR) and (for X=X'=Cl or I) computationally using density functional theory (DFT) and time-dependent DFT (TD-DFT) techniques. The lowest allowed electronic transition occurs between 390 and 460 nm and involves charge transfer from the Ru(halide)(CO) 2 unit to iPr-dab, denoted (1)MLCT/XLCT (metal-to-ligand/halide-to-ligand charge transfer). The lowest triplet state is well modeled by UKS-DFT-CPCM calculations, which quite accurately reproduce the excited-state IR spectrum in the nu(CO) region. It has a (3)MLCT/XLCT character with an intraligand (iPr-dab) (3)pipi* admixture. TRIR spectra of the lowest triplet excited state show two nu(CO) bands that are shifted to higher energies from their corresponding ground-state positions. The magnitude of this upward shift increases as a function of the ligands X and X' [(I)2 < (Sn)(Cl) < (Me)(I) < (Cl)2] and reveals increasing contribution of the Ru(CO)2-->dab MLCT character to the excited state. The lowest triplet state of [Ru(Cl)2(CO)2(iPr-dab)] undergoes a approximately 10 ps relaxation that is followed by CO dissociation, producing cis(CO,CH 3CN),trans(Cl,Cl)-[Ru(Cl)2(CH 3CN)(CO)(iPr-dab)] with a unity quantum yield and 7.2 ns lifetime and without any observable intermediate. To our knowledge, this is the first example of a "slow" CO dissociation from a thermally equilibrated triplet charge-transfer excited state.  相似文献   

9.
Oxidative addition of the silanes R(3)SiH (R(3)= Ph(3), Et(3), EtMe(2)) to the unsaturated cluster [Os(3)(micro-H)[micro(3)-Ph(2)PCH(2)PPh(C(6)H(4))](CO)(8)] leads to the saturated clusters [Os(3)(micro-H)(SiR(3))(CO)(9)(micro-dppm)](SiR(3)= SiPh(3) 1, SiEt(3) 2 and SiEtMe(2)3) and the unsaturated clusters [Os(3)(micro -H)(2)(SiR(3))[micro(3)-Ph(2)PCH(2)PPh(C(6)H(4))](CO)(7)](SiR(3)= SiPh(3) 4, SiEt(3) 5 and SiEtMe(2)6). Structures are based on spectroscopic evidence and a XRD structure of [Os(3)(micro-H)(SiPh(3))(CO)(9)(micro-dppm)] 1 in which all non-CO ligands are coordinated equatorially and the hydride and the silyl groups are mutually cis. From variable-temperature (1)H NMR spectra of the SiEt(3) compound 2, exchange of the P nuclei is clearly apparent. Simultaneous migrations of the SiEt(3) group and of the hydride from one Os-Os edge to another generate a time-averaged mirror plane in the molecule. VT (1)H NMR spectra of the somewhat less bulky compound [Os(3)(micro-H)(SiMe(2)Et)(CO)(9)(micro-dppm)] 3 have been analysed. Two isomers 3a and 3b are observed with the hydride ligand located on different Os-Os edges. Synchronous migration of the hydride and SiMe(2)Et groups is faster than the observed interconversion of isomers which occurs by hydride migration alone. The synchronous motion of H and SiR(3)only occurs when these ligands are mutually cis as in the major isomer 3a and we propose that this process requires the formation of a transient silane complex of the type [Os(3)(eta(2)-HSiR(3))(CO)(9)(micro-dppm)]. Turnstile rotation within an Os(CO)(3)(eta(2)-HSiR(3)) group leads to the observed exchange within the major isomer 3a without exchange with the minor isomer. This process is not observed for the minor isomer 3b because the hydride and the silyl group are mutually trans. Protonation to give [Os(3)(micro-H)(2)(SiR(3))(CO)(9)(micro-dppm)](+) totally suppresses the dynamic behaviour because there are no edge vacancies.  相似文献   

10.
Adams RD  Captain B  Zhu L 《Inorganic chemistry》2007,46(11):4605-4611
The reactions of the osmium-tin cluster complexes Os3(CO)12(mu3-SnPh)Ph, 9, and Os4(CO)16(mu4-Sn), 10, with Pt(PBut3)2 have been investigated. Two products, PtOs3(CO)12(Ph)(PBut3)(mu3-SnPh), 11, and Pt2Os3(CO)12(mu2-Ph)(PBut3)2(mu3-SnPh), 12, were obtained from the reaction of 9 with Pt(PBut3)2. These are mono- and bis-Pt(PBut3) adducts of 9 formed by the addition of a Pt(PBut3) group to the Os-Os bond in 11 and the Os-Os bond and Os-C bond to the sigma-bonded phenyl group in 12. A PBut3 derivative of 11, Os2(CO)8(mu3-SnPh)Os(CO)3(PBut3)Ph, 13, was obtained by treating 12 with PBut3. The reaction of 10 with Pt(PBut3)2 provided the bis-Pt(PBut3) adduct Os4(CO)16[Pt(PBut3)]2(mu4-Sn), 14, that was formed by the addition of a Pt(PBut3) group across the Os-Os bond of both Os2(CO)8 groups in 10. All four new compounds 11-14 were characterized by single-crystal X-ray diffraction analysis.  相似文献   

11.
The photodissociation dynamics of [Re(H)(CO)(3)(H-dab)] (H-dab=1,4-diaza-1,3-butadiene) were studied by means of wavepacket propagations on CASSCF/MR-CCI potentials calculated for the electronic ground state and low-lying excited states as a function of two coordinates, q(a) and q(b), that correspond to the Re-H bond homolysis and to the axial CO loss, respectively. The theoretical absorption spectrum is characterized by two bands, one intense peak centered at lambda=500 nm (21,000 cm(-1)) and one broad band centered at 310 nm (32,500 cm(-1)). The visible band was assigned to the low-lying metal-to-ligand charge-transfer (MLCT) states with a main contribution of the a(1)A'-->c(1)A' transition corresponding to the 3d(xz)-->pi*(dab) excitation. The second band calculated in the UV energy domain was assigned to the d(1)A' (sigma(Mn-H)-->pi*(dab)) state corresponding to a sigma-bond-to-ligand charge-transfer (SBLCT) state. The photodissociation dynamics of the low-lying (1)MLCT and (3)SBLCT states following irradiation in the visible energy domain was simulated by wavepacket propagation on the two-dimensional diabatic potentials V(q(a), q(b)) coupled by the spin-orbit. In contrast to what was found for the manganese analogue, the (1)MLCT state is nonreactive and a rather slow (beyond the ps time scale), nontotal and indirect homolysis of the Re-H bond occurs through (1)MLCT-->(3)SBLCT intersystem crossing.  相似文献   

12.
Reactions between unsaturated [H(2)Os(3)(CO)(9)(PR(3))] clusters (PR(3)= PPh(3), P(4-CF(3)-C(6)H(4))(3), PEt(3)) and 2,4-hexadiyne-1,6-diol have been studied. It was found that the diyne ligand easily reacts with all these complexes to give [HOs(3)(CO)8(PR3)-[mu3, eta1:eta3:eta1)-(CH(3)-C-C=CH-CH=C-O)]] complexes (V, VI and VII, respectively) containing the "Os3C3" pentagonal pyramid cluster framework. This structural pattern is formed through the diyne cyclization, dissociation of a CO ligand and eventual coordination of the cyclized organic moiety to the osmium triangle in the [mu3, eta1:eta3:eta1) manner. In the case of the PEt(3) substituted cluster the second hydride transfer onto the organic fragment occurs to afford the nonhydride [Os(3)(CO)(8)(PR3)[mu3), eta1:eta2:eta1)-(CH(3)-CH-C=CH-CH=C-O)]] cluster, VIII, containing distorted pentagonal pyramid framework with a broken Os-C bond. Heating V, VI of VII and in hexane solutions results in formation of the regioisomers (Va, VIa and VIIa) with the phosphine ligand located at adjacent osmium atoms across the Os-Os bond bridged by the coordinated organic fragment. The most probable mechanism of the isomerization includes reversible phosphine migration between these metal centres. Solid-state structure of V, Va, VI, VIIa and VIII have been established by single crystal X-ray diffraction. A general mechanistic scheme for the diyne ligand cyclization and cluster framework transformations is suggested and discussed.  相似文献   

13.
A novel synthesis method is introduced for the preparation of [Os(NN)(CO)(2)X(2)] complexes (X = Cl, Br, I, and NN = 2,2'-bipyridine (bpy) or 4,4'-dimethyl-2,2'-bipyridine (dmbpy)). In the first step of this two-step synthesis, OsCl(3) is reduced in the presence of a sacrificial metal surface in an alcohol solution. The reduction reaction produces a mixture of trinuclear mixed metal complexes, which after the addition of bpy or dmbpy produce a trans(Cl)-[Os(NN)(CO)(2)Cl(2)] complex with a good 60-70% yield. The halide exchange of [Os(bpy)(CO)(2)Cl(2)] has been performed in a concentrated halidic acid (HI or HBr) solution in an autoclave, producing 30-50% of the corresponding complex. All of the synthesized trans(X)-[Os(bpy)(CO)(2)X(2)] (X = Cl, Br, I) complexes displayed a similar basic electrochemical behavior to that found in the ruthenium analog trans(Cl)-[Ru(bpy)(CO)(2)Cl(2)] studied previously, including the formation of an electroactive polymer [Os(bpy)(CO)(2)](n) during the two-electron electrochemical reduction. The absorption and emission properties of the osmium complexes were also studied. Compared to the ruthenium analogues, these osmium complexes display pronounced photoluminescence properties. The DFT calculations were made in order to determine the HOMO-LUMO gaps and to analyze the contribution of the individual osmium d-orbitals and halogen p-orbitals to the frontier orbitals of the molecules. The electrochemical and photochemical induced substitution reactions of carbonyl with the solvent molecule are also discussed.  相似文献   

14.
Ang SG  Zhong X  Ang HG 《Inorganic chemistry》2002,41(14):3791-3800
Reaction of 1,2,3,4-tetraphenyl-1,2,3,4-tetraphospholane (I) with [Os(3)(CO)(11)(NCMe)] at ambient temperature affords substituted clusters: the monosubstituted trinuclear cluster [Os(3)(CO)(11)[(PPh)(4)CH(2)]] (1) and the isomeric linked bis-trinuclear clusters [[Os(3)(CO)(11)](2)[mu-1,4-eta(2)-(PPh)(4)CH(2)]] (2) and [[Os(3)(CO)(11)](2)[mu-1,3-eta(2)-(PPh)(4)CH(2)]] (3). Clusters 2 and 3 can also be prepared by further reaction of 1 with [Os(3)(CO)(11)(NCMe)]. The reaction at 100 degrees C gives, apart from cluster 2, the disubstituted 1,4-bridged trinuclear cluster [Os(3)(CO)(10)[mu-1,4-eta(2)-(PPh)(4)CH(2)]] (4). The conversion of 1 into 4 can be achieved through the pyrolysis of a solution of 1. When 1 reacts with an equimolar amount of [Os(3)(CO)(10)(mu-H)(2)] at 100 degrees C in toluene, the 1,2,4-linked bis-trinuclear cluster [Os(3)(CO)(11)[mu(3)-1,2,4-eta(3)-(PPh)(4)CH(2)]Os(3)(CO)(8)(mu-H)(2)] (5) is obtained. When I reacts with a 2-fold molar amount of [Os(3)(CO)(10)(mu-H)(2)], the 1,2,3,4-linked bis-trinuclear hydride cluster [[Os(3)(CO)(8)(mu-H)(2)](2)[mu(4)-1,2,3,4-eta(4)-(PPh)(4)CH(2)]] (6) is obtained. Cluster 1 exists as two conformational isomers (1y and 1r) in the crystalline state, due to different conformational arrangements of pseudoaxial carbonyls in the cluster. Cluster 3 shows two interconvertible conformers (3y and 3r) due to the inversion of the configuration of the uncoordinated outer phosphorus atom, and a pair of enantiomers exists in 3r. All of the new compounds obtained have been characterized by spectroscopic and analytical techniques, and their structures have been established by X-ray crystallography.  相似文献   

15.
The lowest absorption band of fac-[Re(Cl)(CO)3(5-NO2-phen)] encompasses two close-lying MLCT transitions. The lower one is directed to LUMO, which is heavily localized on the NO2 group. The UV-vis absorption spectrum is well accounted for by TD-DFT (G03/PBEPBE1/CPCM), provided that the solvent, MeCN, is included in the calculations. Near-UV excitation of fac-[Re(Cl)(CO)3(5-NO2-phen)] populates a triplet metal to ligand charge-transfer excited state, 3MLCT, that was characterized by picosecond time-resolved IR spectroscopy. Large positive shifts of the nu(CO) bands upon excitation (+70 cm(-1) for the A'1 band) signify a very large charge separation between the Re(Cl)(CO)3 unit and the 5-NO2-phen ligand. Details of the excited-state character are revealed by TD-DFT calculated changes of electron density distribution. Experimental excited-state nu(CO) wavenumbers agree well with those calculated by DFT. The 3MLCT state decays with a ca. 10 ps lifetime (in MeCN) into another transient species, that was identified by TRIR and TD-DFT calculations as an intraligand 3npi excited state, whereby the electron density is excited from the NO2 oxygen lone pairs to the pi system of 5-NO2-phen. This state is short-lived, decaying to the ground state with a approximately 30 ps lifetime. The presence of an npi state seems to be the main factor responsible for the lack of emission and the very short lifetimes of 3MLCT states seen in all d6-metal complexes of nitro-polypyridyl ligands. Localization of the excited electron density in the lowest 3MLCT states parallels localization of the extra electron in the reduced state that is characterized by a very small negative shift of the nu(CO) IR bands (-6 cm(-1) for A'1) but a large downward shift of the nu(s)(NO2) IR band. The Re-Cl bond is unusually stable toward reduction, whereas the Cl ligand is readily substituted upon oxidation.  相似文献   

16.
UV-vis absorption and picosecond time-resolved IR (TRIR) spectra of amido and phosphido complexes fac-[Re(ER2)(CO)3(bpy)] (ER2 = NHPh, NTol2, PPh2, bpy = 2,2'-bipyridine, Tol = 4-methylphenyl) were investigated in conjunction with DFT and TD-DFT calculations in order to understand their ground-state electronic structure, low-lying electronic transitions and excited-state character and dynamics. The HOMO is localized at the amido/phosphido ligand. Amide and phosphide ligands are sigma-bonded to Re, the pi interaction being negligible. Absorption spectra show a weak band at low energies (1.7-2.1 eV) that arises from essentially pure ER(2) --> bpy ligand-to-ligand charge transfer (LLCT). The lowest excited state is the corresponding triplet, (3)LLCT. Low triplet energies and large distortions diminish the excited-state lifetimes to 85 and 270 ps for NHPh and NTol(2), respectively, and to ca. 30 ps for PPh2. nu(CO) vibrations undergo only very small ( bpy MLCT character, is a unique feature of the amido/phoshido complexes, whose lowest excited state can be viewed as containing a highly unusual aminyl/phosphinyl radical-cationic ligand. For comparison, the amino and phosphino complexes fac-[Re(NHPh(2))(CO)3(bpy)]+ and fac-[Re(PPh3)(CO)3(bpy)]+ are shown to have the usual Re --> bpy (3)MLCT lowest excited states, characterized by upshifted nu(CO) bands.  相似文献   

17.
The structure and fluxionality of the trihydridodiene complexes (Ph3P)2(η-1,3-<di-ene)ReH3 have been studied by NMR spectroscopy (η-1-3-diene = buta-1,3-diene, 2-methylbuta-1,3-diene, 2,3-dimethylbuta-1,3-diene, cyclohexa-1,3-diene, penta-1,3-diene, hexa-1,3-diene and hexa-2,4-diene). Several rearrangement processes have been observed; they are, in order of increasing temperature: (a) ligand interchange; (b) reversible migration of a hydride ligand on to the diene ligand, leading to η-allyl species and, in the case of the cyclohexadiene trihydride, degenerate isomerisation of the cyclohexadiene moiety; and (c), in the case of the pentadiene and hexadiene derivatives, isomerisation of the diene ligand.  相似文献   

18.
Electronic structure calculations were performed at the B3LYP/6-31G level to identify the stationary structures on the potential energy surfaces for the transmetalation of 2-trimethylstannylbuta-1,3-diene with SnCl(4). The reaction pathways were characterized by locating the transition states on the intrinsic reaction coordinate. The calculations showed that the reaction between the reactant and SnCl(4), which generates 1-trichlorostannylbuta-2,3-diene via transmetalation, has a low energy barrier of 78.1 kJ.mol(-)(1). The following isomerization process is the rate-controlling step. It turned out that the isomerization process from 1-trichlorostannylbuta-2,3-diene to 2-trichloro-stannylbuta-1,3-diene via transmetalation with SnCl(4) is more energetically favorable than other possible isomerization processes.  相似文献   

19.
Tungsten(0) carbonyls react with the strained spiro[2.4]hepta-4,6-diene and the less strained spiro[4.4]nona-1,3-diene with CC bond cleavage and formation of stable alkylene bridged π-cyclopentadienyl-σ-alkyl complexes. The product containing a two carbon bridge has the same unusual spectroscopic properties as the analogous molybdenum complex.  相似文献   

20.
A new interpretation of the electronic spectroscopy, photochemistry, and photophysics of group 6 metal cis-tetracarbonyls [M(CO)(4)L(2)] is proposed, that is based on an interplay between M --> L and M --> CO MLCT excited states. TD-DFT and resonance Raman spectroscopy show that the lowest allowed electronic transition of [W(CO)(4)(en)] (en = 1,2-ethylenediamine) has a W(CO(eq))(2) --> CO(ax) charge-transfer character, whereby the electron density is transferred from the equatorial W(CO(eq))(2) moiety to pi orbitals of the axial CO ligands, with a net decrease of electron density on the W atom. The lowest, emissive excited state of [W(CO)(4)(en)] was identified as a spin-triplet W(CO(eq))(2) --> CO(ax) CT excited state both computationally and by picosecond time-resolved IR spectroscopy. This state undergoes 1.5 ps vibrational relaxation/solvation and decays to the ground state with a approximately 160 ps lifetime. The nu(CO) wavenumbers and IR intensity pattern calculated by DFT for the triplet W(CO(eq))(2) --> CO(ax) CT excited state match well the experimental time-resolved spectrum. For [W(CO)(4)(R-DAB)] (R-DAB = N,N'-bis-alkyl-1,4-diazabutadiene), the W(CO(eq))(2) --> CO(ax) CT transition follows in energy the W --> DAB MLCT transition, and the emissive W(CO(eq))(2) --> CO(ax) CT triplet state occurs just above the manifold of triplet W --> DAB MLCT states. No LF electronic transitions were calculated to occur in a relevant energetic range for either complex. Molecular orbitals of both complexes are highly delocalized. The 5d(W) character is distributed over many molecular orbitals, while neither of them contains a predominant metal-ligand sigma 5d(W) component, contrary to predictions of the traditional ligand-field approach. The important spectroscopic, photochemical, and photophysical roles of M(CO(eq))(2) --> CO(ax) CT excited states and the limited validity of ligand field arguments can be generalized to other mixed-ligand carbonyl complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号