首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Letv andK be positive integers. A (v, k, 1)-Mendelsohn design (briefly (v, k, 1)-MD) is a pair (X,B) whereX is av-set (ofpoints) andB is a collection of cyclically orderedk-subsets ofX (calledblocks) such that every ordered pair of points ofX are consecutive in exactly one block ofB. A necessary condition for the existence of a (v, k, 1)-MD isv(v–1) 0 (modk). If the blocks of a (v, k, 1)-MD can be partitioned into parallel classes each containingv/k blocks wherev ) (modk) or (v – 1)/k blocks wherev 1 (modk), then the design is calledresolvable and denoted briefly by (v, k, 1)-RMD. It is known that a (v, 3,1)-RMD exists if and only ifv 0 or 1 (mod 3) andv 6. In this paper, it is shown that the necessary condition for the existence of a (v, 4, 1)-RMD, namelyv 0 or 1 (mod 4), is also sufficient, except forv = 4 and possibly exceptingv = 12. These constructions are equivalent to a resolvable decomposition of the complete symmetric directed graphK v * onv vertices into 4-circuits.Research supported by the Natural Sciences and Engineering Research Council of Canada under Grant A-5320.  相似文献   

2.
3.
4.
5.
A Mendelsohn triple system (MTS) corresponds to an idempotent semisymmetric Latin square (quasigroup) of the same order. A holey MTS is called frame self-orthogonal, briefly FSOMTS, if its associated holey semisymmetric Latin square is frame self-orthogonal. In this paper, we use FSOMTS(hn) to denote an FSOMTS with n spanning holes of size h. The existence of FSOMTS(hn) for h3 has been known with a few exceptions. We extend the existing results and determine the necessary and sufficient conditions for the existence of FSOMTS(hn) for any h and n with some possible exceptions.  相似文献   

6.
A Mendelsohn triple system of order v (MTS(v)) is a pair (X,B) where X is a v-set and 5g is a collection of cyclic triples on X such that every ordered pair of X belongs to exactly one triple of B. An MTS(v) (X,B) is called pure and denoted by PMTS(v) if (x, y, z) ∈ B implies (z, y, x) ∈B. A large set of MTS(v)s (LMTS(v)) is a collection of v - 2 pairwise disjoint MTS(v)s on a v-set. A self-converse large set of PMTS(v)s, denoted by LPMTS* (v), is an LMTS(v) containing [ v-2/2] converse pairs of PMTS(v)s. In this paper, some results about the existence and non-existence for LPMTS* (v) are obtained.  相似文献   

7.
《Discrete Mathematics》2020,343(2):111652
A Mendelsohn triple system MTS(v,b) is a collection of b cyclic triples (blocks) on a set of v points. It is j-balanced for j=1,2,3 when any two points, ordered pairs, or cyclic triples (resp.) are contained in the same or almost the same number of blocks (difference at most one). A (2,3)-balanced Mendelsohn triple system is an MTS(v,b) that is both 2-balanced and 3-balanced. Employing large sets of Mendelsohn triple systems and partitionable Mendelsohn candelabra systems, we completely determine the spectrum for which a 2-balanced Mendelsohn triple system exists. Meanwhile, we determine the existence spectrum for a (2,3)-balanced Mendelsohn triple system.  相似文献   

8.
We define a Mendelsohn triple system (MTS) of order coprime with 3, and having multiplication affine over an abelian group, to be affine, nonramified. By exhibiting a one‐to‐one correspondence between isomorphism classes of affine MTS and those of modules over the Eisenstein integers, we solve the isomorphism problem for affine, nonramified MTS and enumerate these isomorphism classes (extending the work of Donovan, Griggs, McCourt, Opr?al, and Stanovský). As a consequence, all entropic MTSs of order coprime with 3 and distributive MTS of order coprime with 3 are classified. Partial results on the isomorphism problem for affine MTS with order divisible by 3 are given, and a complete classification is conjectured. We also prove that for any affine MTS, the qualities of being nonramified, pure, and self‐orthogonal are equivalent.  相似文献   

9.
10.
《Discrete Mathematics》2021,344(12):112596
A holey Mendelsohn triple system (HMTS) is a decomposition of a complete multipartite directed graph into directed cycles of length 3. If the directed cycles of length 3 can be partitioned into parallel classes, then the HMTS is called an RHMTS. Bennett, Wei and Zhu [J. Combin. Des., 1997] showed that an RHMTS of type gn exists when gn0(mod3) and (g,n)(1,6) with some possible exceptions. In this paper, motivated by the application in constructing RHMTSs, we investigate the constructions of holey Mendelsohn frames. We prove that a 3-MHF of type (n,ht) exists if and only if n3, t4 and nh(t1)0(mod3), and then determine that the necessary condition for the existence of an RHMTS of type gn, namely, gn0(mod3) is also sufficient except for (g,n)=(1,6). New recursive constructions on incomplete RHMTSs via MHFs are introduced to settle this problem completely.  相似文献   

11.
Junling Zhou  L. Ji 《Discrete Mathematics》2008,308(10):1850-1863
An LPMTS(v) is a collection of v-2 disjoint pure Mendelsohn triple systems on the same set of v elements. In this paper, the concept of t-purely partitionable Mendelsohn candelabra system (or t-PPMCS in short) is introduced for constructing LPMTS(v)s. A powerful recursive construction for t-PPMCSs is also displayed by utilizing s-fan designs. Together with direct constructions, the existence of an LPMTS(v) for and v>1 is established. For odd integer v?7, a special construction from both LPMTS(v) and OLPMTS(v) to LPMTS(2v+1) is set up. Finally, the existence of an LPMTS(v) is completely determined to be the set .  相似文献   

12.
In this article, we study a large set of disjoint pure Mendelsohn triple systems “with holes” (briefly LPHMTS), which is a generalization of large set of disjoint pure Mendelsohn triple systems (briefly LPMTS), and give some recursive constructions on LPHMTS. Using these constructions, we show that there exists LPMTS(2n + 2) for any n ≠ 2. © 2000 John Wiley & Sons, Inc. J Combin Designs 8: 274–290, 2000  相似文献   

13.
《Discrete Mathematics》2021,344(12):112619
An LPMTS(v,λ) is a collection of v2λ disjoint pure Mendelsohn triple system PMTS(v,λ)s on the same set of v elements. An LPMTS(v) is a special LPMTS(v,1) which contains exactly v22 converse pairs of PMTS(v)s. In this paper, we mainly discuss the existence of an LPMTS(v) for v6,10mod 12 and get the following conclusions: (1) there exists an LPMTS(v) if and only if v0,4mod 6,v4 and v6. (2) There exists an LPMTS(v,λ) with index λ2,4mod 6 if and only if v0,4mod 6,v2λ+2,v2modλ.  相似文献   

14.
We first define a transitive resolvable idempotent quasigroup (TRIQ), and show that a TRIQ of order v exists if and only if 3∣v and . Then we use TRIQ to present a tripling construction for large sets of resolvable Mendelsohn triple systems s, which improves an earlier version of tripling construction by Kang. As an application we obtain an for any integer n≥1, which provides an infinite family of even orders.  相似文献   

15.
Let M = {m1, m2, …, mh} and X be a v-set (of points). A holey perfect Mendelsohn designs (briefly (v, k, λ) - HPMD), is a triple (X, H, B), where H is a collection of subsets of X (called holes) with sizes M and which partition X, and B is a collection of cyclic k-tuples of X (called blocks) such that no block meets a hole in more than one point and every ordered pair of points not contained in a hole appears t-apart in exactly λ blocks, for 1 ≤ tk − 1. The vector (m1, m2, …, mh) is called the type of the HPMD. If m1 = m2 = … = mh = m, we write briefly mh for the type. In this article, it is shown that the necessary condition for the existence of a (v, 4, λ) - HPMD of type mh, namely, is also sufficient with the exception of types 24 and 18 with λ = 1, and type m4 for odd m with odd λ. © 1997 John Wiley & Sons, Inc. J Combin Designs 5: 203–213, 1997  相似文献   

16.
Candelabra quadruple systems play an important role in the construction of Steiner 3‐designs. In this article, we consider resolvable candelabra quadruple systems with three groups and show that the necessary conditions on the existence of RCQS(g3: s) when g is even are also sufficient. © 2011 Wiley Periodicals, Inc. J Combin Designs 19:247‐267, 2011  相似文献   

17.
The basic necessary conditions for the existence of a (v, k, λ)-perfect Mendelsohn design (briefly (v, k, λ)-PMD) are vk and λ v(v − 1) ≡ 0 (mod k). These conditions are known to be sufficient in most cases, but certainly not in all. For k = 3, 4, 5, 7, very extensive investigations of (v, k, λ)-PMDs have resulted in some fairly conclusive results. However, for k = 6 the results have been far from conclusive, especially for the case of λ = 1, which was given some attention in papers by Miao and Zhu [34], and subsequently by Abel et al. [1]. Here we investigate the situation for k = 6 and λ > 1. We find that the necessary conditions, namely v ≥ 6 and λ v(v − 1)≡0 (mod 6) are sufficient except for the known impossible cases v = 6 and either λ = 2 or λ odd. Researcher F.E. Bennett supported by NSERC Grant OGP 0005320.  相似文献   

18.
19.
A hexagon triple is the graph consisting of the three triangles (triples) {a,b,c},{c,d,e}, and {e,f,a}, where a,b,c,d,e, and f are distinct. The triple {a,c,e} is called an inside triple. A hexagon triple system of order n is a pair (X,H) where H is a collection of edge disjoint hexagon triples which partitions the edge set of Kn with vertex set X. The inside triples form a partial Steiner triple system. We show that any Steiner triple system of order n can be embedded in the inside triples of a hexagon triple system of order approximately 3n.  相似文献   

20.
Transverse Steiner quadruple systems with five holes are either of type g5 or g4u1. We concentrate on the systems of type g4u1 and settle existence except when gu ≡ 2 (mod 4) and all except 40 parameter situations when gu + 2 ≡ 0 (mod 4). The question of existence for transverse quadruple systems of type g4u1 with index λ > 1 is completely solved for all λ ≥ 13 and λ ∈ {4, 6, 8, 9, 10, 12}. © 2006 Wiley Periodicals, Inc. J Combin Designs 15: 315–340, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号