首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The block-by-block method, proposed by Linz for a kind of Volterra integral equations with nonsingular kernels, and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations (FDEs) with Caputo derivatives, is an efficient and stable scheme. We analytically prove and numerically verify that this method is convergent with order at least 3 for any fractional order index $\alpha>0$.  相似文献   

2.
本文主要研究了一类多项Caputo分数阶随机微分方程的Euler-Maruyama (EM)方法,并证明了其强收敛性.具体地,我们首先构造了求解多项Caputo分数阶随机微分方程初值问题的EM方法,然后证明分数阶导数的指标满足$\frac{1}{2}<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m}<1$时,该方法是$\alpha_{m}-\alpha_{m-1}$阶强收敛的.文末的数值试验验证了理论结果的正确性.  相似文献   

3.
In this paper, a block-by-block numerical method is constructed for the impulsive fractional ordinary differential equations (IFODEs). Firstly, the stability and convergence analysis of the scheme are established. Secondly, the numerical solution which converges to the exact solution with order $3+\gamma$ for $0<\gamma<1$ is proved, where $\gamma$ is the order of the fractional derivative. Finally, a series of numerical examples are carried out to verify the correctness of the theoretical analysis.  相似文献   

4.
In this paper, we propose a finite difference/collocation method for two-dimensional time fractional diffusion equation with generalized fractional operator. The main purpose of this paper is to design a high order numerical scheme for the new generalized time fractional diffusion equation. First, a finite difference approximation formula is derived for the generalized time fractional derivative, which is verified with order $2-\alpha$ $(0<\alpha<1)$. Then, collocation method is introduced for the two-dimensional space approximation. Unconditional stability of the scheme is proved. To make the method more efficient, the alternating direction implicit method is introduced to reduce the computational cost. At last, numerical experiments are carried out to verify the effectiveness of the scheme.  相似文献   

5.
In this paper, we develop a two-grid method (TGM) based on the FEM for 2D nonlinear time fractional two-term mixed sub-diffusion and diffusion wave equations. A two-grid algorithm is proposed for solving the nonlinear system, which consists of two steps: a nonlinear FE system is solved on a coarse grid, then the linearized FE system is solved on the fine grid by Newton iteration based on the coarse solution. The fully discrete numerical approximation is analyzed, where the Galerkin finite element method for the space derivatives and the finite difference scheme for the time Caputo derivative with order $\alpha\in(1,2)$ and $\alpha_{1}\in(0,1)$. Numerical stability and optimal error estimate $O(h^{r+1}+H^{2r+2}+\tau^{\min\{3-\alpha,2-\alpha_{1}\}})$ in $L^{2}$-norm are presented for two-grid scheme, where $t,$ $H$ and $h$ are the time step size, coarse grid mesh size and fine grid mesh size, respectively. Finally, numerical experiments are provided to confirm our theoretical results and effectiveness of the proposed algorithm.  相似文献   

6.
通过分段线性插值多项式方法构造了一类含有Hadamard有限部分积分的非线性常微分方程的数值离散格式.在时间方向上, 利用分段线性插值多项式方法对分数阶导数项进行近似, 并通过二阶向后差分格式来离散整数阶导数项.经过详细的证明, 得到了收敛精度为O(τmin{1+α,1+β})的误差估计结果.最后,通过数值算例和理论结果的对比直观地说明了理论分析的正确性.  相似文献   

7.
Hadamard introduced the concept of finite parts of divergent integrals.i.e.Hadamardprincipal value,when he researched the Cauehy problems of the hyperbolic type partialdifferential equations.In this paper,the authors try to generalize this concept to the singularintegrals on a sphere of several complex variables space C~n.The Hadamard principal valueof higher order singular integralis defined and the corresponding Plemelj formula is obtained.  相似文献   

8.
Many physical processes appear to exhibit fractional order behavior that may vary with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. Numerical methods and analysis of stability and convergence of numerical scheme for the variable fractional order partial differential equations are quite limited and difficult to derive. This motivates us to develop efficient numerical methods as well as stability and convergence of the implicit numerical methods for the space-time variable fractional order diffusion equation on a finite domain. It is worth mentioning that here we use the Coimbra-definition variable time fractional derivative which is more efficient from the numerical standpoint and is preferable for modeling dynamical systems. An implicit Euler approximation is proposed and then the stability and convergence of the numerical scheme are investigated. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.  相似文献   

9.
In this paper, a class of nonlinear fractional order differential impulsive systems with Hadamard derivative is discussed. First, a reasonable concept on the solutions of fractional impulsive Cauchy problems with Hadamard derivative and the corresponding fractional integral equations are established. Second, two fundamental existence results are presented by using standard fixed point methods. Finally, two examples are given to illustrate our theoretical results.  相似文献   

10.
The study of delay-fractional differential equations (fractional DEs) have recently attracted a lot of attention from scientists working on many different subjects dealing with mathematically modeling. In the study of fractional DEs the first question one might raise is whether the problem has a solution or not. Also, whether the problem is stable or not? In order to ensure the answer to these questions, we discuss the existence and uniqueness of solutions (EUS) and Hyers-Ulam stability (HUS) for our proposed problem, a nonlinear fractional DE with $p$-Laplacian operator and a non zero delay $\tau>0$ of order $n-1<\nu^*,\,\epsilon相似文献   

11.
This paper is concerned with numerical solutions of time-fractional parabolic equations. Due to the Caputo time derivative being involved, the solutions of equations are usually singular near the initial time $t = 0$ even for a smooth setting. Based on a simple change of variable $s = t^β$, an equivalent $s$-fractional differential equation is derived and analyzed. Two types of finite difference methods based on linear and quadratic approximations in the $s$-direction are presented, respectively, for solving the $s$-fractional differential equation. We show that the method based on the linear approximation provides the optimal accuracy$\mathcal{O}(N ^{−(2−α)})$ where $N$ is the number of grid points in temporal direction. Numerical examples for both linear and nonlinear fractional equations are presented in comparison with $L1$ methods on uniform meshes and graded meshes, respectively. Our numerical results show clearly the accuracy and efficiency of the proposed methods.  相似文献   

12.
We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative. The method is developed by dividing the domain into a number of subintervals, and applying the quadratic interpolation on each subinterval. The method is shown to be unconditionally stable, and for general nonlinear equations, the uniform sharp numerical order 3 − $ν$ can be rigorously proven for sufficiently smooth solutions at all time steps. The proof provides a general guide for proving the sharp order for higher-order schemes in the nonlinear case. Some numerical examples are given to validate our theoretical results.  相似文献   

13.
《Mathematische Nachrichten》2018,291(2-3):443-491
In this paper, we propose the concepts of Caputo fractional derivatives and Caputo type Hadamard fractional derivatives for piecewise continuous functions. We obtain general solutions of four classes of impulsive fractional differential equations (Theorem 3.1–Theorem 3.4) respectively. These results are applied to converting boundary value problems for impulsive fractional differential equations to integral equations. Some comments are made on recently published papers (see Section 4).  相似文献   

14.
In this paper, we consider the Euler-Maruyama method for a class of stochastic Volterra integral equations (SVIEs). It is known that the strong convergence order of the Euler-Maruyama method is $\frac12$. However, the strong superconvergence order $1$ can be obtained for a class of SVIEs if the kernels $\sigma_{i}(t, t) = 0$ for $i=1$ and $2$; otherwise, the strong convergence order is $\frac12$. Moreover, the theoretical results are illustrated by some numerical examples.  相似文献   

15.
In this paper, finite element method with high-order approximation for time fractional derivative is considered and discussed to find the numerical solution of time fractional convection-diffusion equation. Some lemmas are introduced and proved, further the stability and error estimates are discussed and analyzed, respectively. The convergence result $O(h^{r+1}+\tau^{3-\alpha})$ can be derived, which illustrates that time convergence rate is higher than the order $(2-\alpha)$ derived by $L1$-approximation. Finally, to validate our theoretical results, some computing data are provided.  相似文献   

16.
Until now most of the results are obtained in the sense of fractional derivatives such as Caputo and Riemann-Liouville, and there are few models using the Hadamard fractional derivatives. In this paper, based on the properties of the Green"s function, the existence of positive solutions are obtained for a Hadamard fractional differential equation with a higher-order sign-changing nonlinearity under some conditions by the fixed point theorem, and the existence of positive solutions is dependent on the parameter $\varrho$ for the Semipositive problem.  相似文献   

17.
In previous papers [6-8,10], we derived convergent and asymptotic expansions of solutions of second order linear differential equations with a large parameter. In those papers we generalized and developed special cases not considered in Olver"s theory [Olver, 1974]. In this paper we go one step forward and consider linear differential equations of the third order: $y"+a\Lambda^2 y"+b\Lambda^3y=f(x)y"+g(x)y$, with $a,b\in\mathbb{C}$ fixed, $f"$ and $g$ continuous, and $\Lambda$ a large positive parameter. We propose two different techniques to handle the problem: (i) a generalization of Olver"s method and (ii) the transformation of the differential problem into a fixed point problem from which we construct an asymptotic sequence of functions that converges to the unique solution of the problem. Moreover, we show that this second technique may also be applied to nonlinear differential equations with a large parameter. As an application of the theory, we obtain new convergent and asymptotic expansions of the Pearcey integral $P(x,y)$ for large $|x|$.  相似文献   

18.
This paper focuses on the finite element method for Caputo-type parabolic equation with spectral fractional Laplacian, where the time derivative is in the sense of Caputo with order in (0,1) and the spatial derivative is the spectral fractional Laplacian. The time discretization is based on the Hadamard finite-part integral (or the finite-part integral in the sense of Hadamard), where the piecewise linear interpolation polynomials are used. The spatial fractional Laplacian is lifted to the local spacial derivative by using the Caffarelli–Silvestre extension, where the finite element method is used. Full-discretization scheme is constructed. The convergence and error estimates are obtained. Finally, numerical experiments are presented which support the theoretical results.  相似文献   

19.
In this paper, a stochastic linear two-step scheme has been presented to approximate backward stochastic differential equations (BSDEs). A necessary and sufficient condition is given to judge the $\mathbb{L}_2$-stability of our numerical schemes. This stochastic linear two-step method possesses a family of $3$-order convergence schemes in the sense of strong stability. The coefficients in the numerical methods are inferred based on the constraints of strong stability and $n$-order accuracy ($n\in\mathbb{N}^+$). Numerical experiments illustrate that the scheme is an efficient probabilistic numerical method.  相似文献   

20.
We study a nonlocal boundary value problem of Hadamard type coupled sequential fractional differential equations supplemented with coupled strip conditions (nonlocal Riemann-Liouville integral boundary conditions). The nonlinearities in the coupled system of equations depend on the unknown functions as well as their lower order fractional derivatives. We apply Leray-Schauder alternative and Banach’s contraction mapping principle to obtain the existence and uniqueness results for the given problem. An illustrative example is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号