首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高分子在受限稀溶液中的结构和动力学性质   总被引:3,自引:3,他引:0  
利用平衡态及非平衡态耗散粒子动力学模拟方法, 分别研究了平衡态和流场作用下受限高分子在稀溶液中的链结构和动力学. 采用没有滑移和密度涨落的边界条件模拟纳米管道环境, 进而研究了高分子回转半径和扩散系数对受限强度及高分子与溶剂间相互作用的依赖关系. 在非平衡态模拟中, 分别考虑了Poiseuille和Couette两种流场. 研究发现, 在这两种流场作用下, 高分子都随着溶剂与高分子排斥作用的降低而向管道中心迁移. 在强流场下, 在Poiseuille流场中高分子密度呈现出双峰分布, 而在Couette流场中则呈现为单峰分布.  相似文献   

2.
利用平衡态分子动力学方法(EMD)模拟了纳米尺寸限制球壳内I2在Ar溶液中的振动能量转移. 计算并讨论了I2振动能量弛豫时间T1随球壳半径、溶剂密度的变化规律. 通过分子间相互作用分析, 在原子、分子水平上, 揭示了随着球壳半径的减小, T1呈逐渐增大趋势的原因. 结果表明, 球壳的几何限制效应和表面作用对受限溶液密度分布的影响较大, 从而导致溶质振动弛豫的显著变化. 此外, 非限制体系模拟显示, 非平衡态分子动力学(NEMD)方法可以得到与平衡态分子动力学方法较一致的振动能量弛豫时间T1.  相似文献   

3.
利用平衡态分子动力学方法(EMD)模拟了纳米尺寸限制球壳内I2在Ar溶液中的振动能量转移.计算并讨论了I2振动能量弛豫时间T1随球壳半径、溶剂密度的变化规律.通过分子间相互作用分析,在原子、分子水平上,揭示了随着球壳半径的减小,T1呈逐渐增大趋势的原因.结果表明,球壳的几何限制效应和表面作用对受限溶液密度分布的影响较大,从而导致溶质振动弛豫的显著变化.此外,非限制体系模拟显示,非平衡态分子动力学(NEMD)方法可以得到与平衡态分子动力学方法较一致的振动能量弛豫时间T1.  相似文献   

4.
用动力学Monte Carlo方法模拟了受限于两平行板之间的高分子链,并用扫描法计算了链的构象熵S,研究了构象熵相对于自由链的减小量(S0-S)与平行板间距D和高分子链长n的关系.结果证实了de Gennes的自由能标度关系,并给出了标度关系适用的范围.当D非常小时,高分子链受到强烈限制,S0-S与n成正比,表明单链节受到平行板的平均排斥作用力与链长无关.随着D增大,平行板对构象熵的影响越来越弱,单链节受到平行板的平均排斥作用力随链长的增长而增大.当D比较大时,平行板对构象熵的影响近似可以忽略,高分子链构象熵与自由空间中的结果一致.  相似文献   

5.
高分子浓溶液相分离动力学的Monte Carlo模拟   总被引:1,自引:0,他引:1  
运用链动力学MonteCarlo方法模拟了高分子浓溶液的spinodal相分离动力学过程 .结果表明 :分相早期 ,散射峰的位置向左移动 ,不符合经典的Cahn Hilliard线性理论 ;分相后期 ,聚合物相形态处于逾渗状态 ,结构因子可以被标度化 ,且基本符合相应的Furukawa标度律 .模拟结果与相关实验相符 .揭示了线团尺寸在深度淬冷过程中先急剧收缩、然后随相分离的进行而逐步上升的复杂变化 ,表明链动力学MonteCarlo方法能同时考察高分子链的构象变化和多链体系的分相过程以及两者的关联  相似文献   

6.
本文采用多粒子碰撞动力学与分子动力学耦合的模拟方法研究了环形高分子单链在良溶剂中的静态与动态性质,并与线形分子进行了对比.研究发现,环形高分子链内粒子之间的平均距离小于线形链,即粒子排列得更加紧密;相应的均方回转半径也小于线形链,线形链与环形链的均方回转半径的比值为1.77;同时,环形链扩散的速度也比线形链快,两者比值为1.10.模拟结果揭示了扩散行为是排斥体积作用和流体力学相互作用耦合的结果,在扩散过程中,流体力学相互作用消减了排斥体积作用对扩散行为的贡献.此外,通过对有和没有流体力学相互作用的多粒子碰撞动力学得到的结果作对比,研究了流体力学相互作用对高分子静态和动态行为的影响,结果表明,流体力学相互作用使高分子链在极稀溶液中的扩散速度变快.  相似文献   

7.
利用Monte Carlo算法模拟了嵌入柱阵列中高分子的爬行过程.模拟结果显示窄间距的柱阵列可以有效地抑制嵌于其中的高分子链的长度涨落,并使得高分子链的弛豫时间符合爬行理论给出的标度律.通过对比爬行理论与模拟得到的链端关联函数可知,柱阵列中的爬行过程与高分子熔体中的爬行过程存在着微妙的差别.在柱阵列中高分子的链端无法完全消灭原有的管道,从而导致了链端关联函数被爬行理论低估.本文给出的二维自回避格点模型则可以很好地描述柱阵列中高分子的爬行过程.  相似文献   

8.
采用分子动力学模拟的方法研究了长短链二元线形高分子共混熔体在平衡态下的结构、动力学性质以及黏度.结果表明:共混对组分的结构性质没有影响,共混体系中2组分各自的均方回转半径以及均方末端距均与单分散体系中相同;共混显著地影响动力学性质,即长链在共混体系中的扩散和松弛会加快,相反,短链的扩散和松弛则会变慢;另外,该共混体系的黏度符合简单的线性叠加.  相似文献   

9.
长链高分子的柔性赋于高分子材料一系列特殊性能,因此研究高分子链的柔性程度及其与高分子链结构和性能的关系,有着极为重要的基础意义,在讨论和研究高分子链柔性时,必须分清静态柔性和动态柔性。静态柔性指的是热力学平衡态柔性,它反映在溶液内高分子的构象和形态,而动态柔性是指在外界条件的影响下从一种平衡态构象转变成另一种平衡态构象的速度过程。本文的讨论仅限于高分子链的静态柔性。  相似文献   

10.
通过标度关系,给出了良溶剂和熔体或θ溶剂中真实高分子链相关函数的幂率衰减关系.这一问题的物理背景,与液体中小分子速度和应力的时间相关函数的长时间拖尾现象,具有可类比的物理图像,但是由于高分子系统的复杂性,高分子的链相关函数表现出更复杂和丰富的可能形式.  相似文献   

11.
生物高分子、液晶高分子和共轭高分子都是具有半刚性性质的一维线型链状分子.半刚性高分子的链长与高分子的持久长度在同一数量级,蠕虫链是最好的用来研究这类半刚性高分子统计性质的理论模型之一.其特性表现为高分子键的取向极大地影响统计行为,同时链的不可伸长性约束了高分子链的构象.这些性质可以通过结构因子的分析来开展研究.结构因子是描述体系在各个尺度上密度关联的物理量,是联系散射实验和高分子理论研究的桥梁,既可以通过散射实验测量,也可以通过理论上对链模型对应的传播子积分得到.由于蠕虫链模型的构象同时依赖位置和取向自由度,因而严格求解其传播子非常困难.这严重限制了蠕虫链模型场论理论的发展,特别是限制了应用高斯涨落理论进行有序结构的稳定性分析.本文综述了广泛采用的蠕虫链模型结构因子的渐近解和经验公式,并着重介绍近年来严格求解结构因子的最新进展.通过分析结构因子在不同波数区域上的标度规律,展示了蠕虫链模型的多尺度特点,以及其他经典的高分子链模型的关系.  相似文献   

12.
本文主要分为三部分:第一部分主要介绍了当前溶剂效应理论及其计算方法,以及溶液中卤素负离子体系光致离子化现象的研究现状;第二部分在前期工作基础上简单介绍约束平衡态理论的基本思想,并推导了溶液中光致离子化过程光谱移动和垂直离子化能计算的点电荷单球孔穴模型的计算公式;第三部分是将新的能量公式应用于卤素负离子体系的光谱移动和垂直离子化能的研究,并与传统的非平衡溶剂化理论及实验结果进行比较.Marcus的传统方法和我们过去的处理,都希望通过直接积分平衡和非平衡态之间所需做的功或者能量变化来直接推导非平衡态的静电自由能.但不论对于Marcus采用的积分功公式,还是我们采用的Jackson积分公式,其共同的特点都是只能用于处理平衡态之间的能量变化.因此,对于非平衡溶剂化态,本文采用Leontovich的热力学约束平衡态的方法处理非平衡态,其核心思想是任何一个热力学非平衡态都可以通过外加场的方法达到相应的热力学约束平衡态.在连续介质模型下,若采用电场强度E和电极化P描述溶质溶剂体系的静电状态,在光致离子化过程中,溶液中的溶剂和溶质会经历这样三个不同的状态:通过外加电场exE使非平衡态达到约束平衡态non non2ex2[E+E,P],而约束平衡态和非平衡态之间的能量差可以通过在保持溶剂极化不变条件下,迅速移走约束外场所需做的功计算.最终,根据约束平衡态理论,可以得到非平衡态的溶剂化能的表达式为:在单球孔穴点电荷模型下,其形式为相应的光谱移动和垂直离子化能公式为:本文采用卤素负离子体系作为算例.首先,根据Cl?的真空离子化能计算结果,选择CCSD-t/aug-cc-pvqz来计算所有体系的真空离子化能,对于I离子体系选择基组为DGDZVP.理论计算得到了与实验值吻合很好的卤素单原子和双原子分子离子的真空离子化能,计算结果显示卤素单原子离子的真空离子化能随半径的增加而减小且都高于3.0eV,而分子离子则随半径的增加而增大但均低于2.6eV.分别采用传统理论和本文推导的表达式计算卤素负离子体系在水溶液中的光谱移动和垂直离子化能,其中球孔穴半径选取离子半径.结果表明,我们计算得到的结果与光电子发射能谱观测的实验数据吻合很好,而传统非平衡溶剂化理论得到的结果则明显高于实验观测数据.而且,我们理论计算得到的CTTS光谱的值与实验测定的CTTS光谱值也相当接近,表明我们的公式在估算卤素负离子体系的光谱移动和垂直离子化能方面比传统非平衡理论更准确;另外卤素单原子离子和双原子分子离子的真空垂直离子化能随溶质半径的增加呈相反变化趋势,但是由于溶剂效应的影响,其在溶液中的垂直离子化能随半径的增大的变化趋势相同.  相似文献   

13.
用自旋-自旋弛豫时间考察了线型聚苯乙烯溶液与溶胀交联聚丙烯酰胺-丙烯酸凝胶的质子弛豫行为。发现在溶胀交联体系中,不论交联度高低,聚丙烯酰胺-丙烯酸质子的弛豫时间弛豫都呈现出双指数衰减特征;而在线型溶液体系中,聚苯乙烯质子的弛豫时间弛豫符合单指数衰减特征。说明在线性聚苯乙烯溶液中,高分子的链段运动是一种均匀行为,而在溶胀交联聚丙烯酰胺-丙烯酸体系中,不论交联度高低,高分子链段运动始终存在快慢不同的两部分。  相似文献   

14.
基于超支化高分子的生长代数模型,利用Monte Carlo模拟方法研究了不同溶剂条件下自缩合乙烯基聚合(SCVP)体系的环化效应.根据SCVP体系的反应机理给出含环反应的微分动力学方程,并通过环化反应的内在特征确定了分子间反应和内环化反应的速率常数.在此基础上,利用Monte Carlo模拟方法得到了高分子的数量分布函数、重均分子量、环数以及含环分子的链段分数等相关物理量,分析了环化效应对于体系平均物理量的影响.进一步根据模拟结果对单体浓度和溶剂效应等对内环化反应的影响予以分析.结果表明,环化效应取决于单体浓度和溶剂效应之间的协同作用,其中单体浓度在环化反应中起着主导作用.  相似文献   

15.
基于多重微晶网络结构模型和分子分凝机制建立了高分子晶体的微晶核-和微晶粒-高分子链组模型,推导出了平衡态下高分子预结晶动力学方程,计算出了平衡态下不同尺寸微晶核-和微晶粒-高分子链组的几率分布函数.建立了非稳态下不同尺寸的微晶核-高分子链组的成核演化方程和微晶粒-高分子链组的增长演化方程,求解一般状态下的两个演化方程后,得到了不同时间和不同尺寸的微晶核-和微晶粒-高分子链组的一般密度分布函数.最后根据成核自由能和增长自由能对晶核和晶粒的尺寸大小的依赖性,提出了微晶核-高分子链组和微晶粒-高分子链组存在稳定性的热力学条件和动力学条件,成功地表征为三个特征区(稳态、亚稳态和非稳态).  相似文献   

16.
本文测定了一系列具有不同微观结构的1,2-聚丁二烯样品在四种溶剂的50.3MHz ~(13)C自旋-晶格弛豫时间(T_1)和核Overhauser效应(NOE)值。并用Schaefer logx~2相关时间分布模型对实验数据进行了拟合。研究了1,2-聚丁二烯在溶液中的~(13)C-NMR弛豫的溶剂效应及其与结构的关系。发现聚合物与溶剂的溶解度参数之差△δ越大,聚合物在溶液中协同链段运动趋向越明显,~(13)C自旋-晶格弛豫速率(1/T_1)越大;1,2-链节较少,分子链较柔顺时,~(13)C-NMR弛豫受溶剂影响较显著。NMR弛豫参数对结构变化的反应在良溶剂中比在不良溶剂中敏感。  相似文献   

17.
用 2DNMR(HMQC)技术归属了溶液中尼龙 11分子的主要1H和13 C NMR共振信号 ,并通过变温和变浓度 1H NMR弛豫时间的测定 ,得到了尼龙 11溶液中氢键结构变化的动力学信息 .结果表明 ,溶液中尼龙 11分子的弛豫行为与一般高聚物不同 ,随着温度升高 ,尼龙链间相互作用逐渐减弱 ,尼龙分子与溶剂小分子间相互作用逐渐增强 ,尼龙链间氢键逐渐离解 ,而离解出来的自由NH和CO基团又与溶剂小分子间生成氢键 .尼龙 11链卷曲堆积成无规线团状 ,一部分溶剂被包裹在内部并和α CO质子成为一个整体而一起运动 .变浓度实验弛豫过程呈现双指数特性 ,快弛豫部分随体系浓度增加而增多 ,表明聚合物溶液中凝聚缠结含量的增大 ,这种凝聚缠结是由溶液中氢键引起分子链物理交联成网而形成的 .随着浓度增加 ,溶液逐渐变成局部粘度较大的类似软固体  相似文献   

18.
在非平衡态热力学的基础上探索建立催化理论的新途径   总被引:1,自引:0,他引:1  
平衡态热力学一直被认作多相催化理论的基石之一.但是,它并不能概括工作中的催化剂的状态和行为,这主要是这里还发生一些非平衡过程.催化体系常常处于非平衡状态之下,而非平衡态条件下体系的状态和行为,同时取决于体系的动力学和热力学.联系动力学和热力学最一般的关系式并非原来的DeDonder不等式:Ar≥0,而是新的De Donder方程ln r/ r=A/RT.同时发生的总反应之间的热力学耦合对总反应的作用只是形式上的,远不及催化反应链中各基元步骤之间在动力学上的耦合那么重要.通过在动力学方程中引入反应亲和力(热力学位)得到的动力学-热力学结合近似分析,可以用来分析非平衡态的催化反应和催化剂状态.非平衡态热力学在建立多相催化理论中,较之原来的平衡态热力学将能提供更能采纳的和更有意义的物理化学背景.  相似文献   

19.
以典型的超支化聚合反应体系为例概述了体系的热力学和统计力学性质,重点集中在平均分子量、均方回转半径及支化点密度等特征与热力学量间的关联,以期阐明超支化高分子空间结构与物理性质的调控机制.从空间关联的角度赋予重均聚合度以相应的物理解释,建立其与等温压缩系数的直接关系.通过子链分布导出均方回转半径和流体力学半径的解析形式,并利用高分子的邻接矩阵进行具体计算.在此基础上,从相变与临界现象的角度出发,解释了体系中相关物理量的标度行为,给出相应的广义标度律.为了优化超支化高分子的工业生产流程,引入生成函数方法系统地探讨了分批投料过程中的相关参数对平均高分子量的影响.此外,提出了基于生长代数的Monte Carlo模拟方案,用以辅助研究高分子结构与特征的对应关系.作为应用,揭示了环化效应、溶剂效应及非等活性等因素对聚合反应的影响.  相似文献   

20.
利用平衡态耗散粒子动力学(Dissipative Particle Dynamics, DPD)方法,研究了嵌段共聚物自组装形成胶束以及均聚物链在其表面的吸附。进一步采用非平衡态耗散粒子动力学(Non-Equilibrium Dissipative Particle Dynamics, NEDPD)方法,通过加入剪切,研究了均聚物的脱落和胶束的分裂过程。模拟结果揭示了脱落时间随剪切速率的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号