首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corresponding to each odd integer q, we construct a complex orthogonal design. The number of variables and the form of the design depends on the integer q. Almost all of these designs are new and as a corollary we get a new asymptotic existence result for complex Hadamard matrices. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Given any natural number q > 3 we show there exists an integer t ? [2log2(q ? 3)] such that an Hadamard matrix exists for every order 2sq where s > t. The Hadamard conjecture is that s = 2.This means that for each q there is a finite number of orders 2υq for which an Hadamard matrix is not known. This is the first time such a statement could be made for arbitrary q.In particular it is already known that an Hadamard matrix exists for each 2sq where if q = 2m ? 1 then s ? m, if q = 2m + 3 (a prime power) then s ? m, if q = 2m + 1 (a prime power) then s ? m + 1.It is also shown that all orthogonal designs of types (a, b, m ? a ? b) and (a, b), 0 ? a + b ? m, exist in orders m = 2t and 2t+2 · 3, t ? 1 a positive integer.  相似文献   

3.
In [2] R. C. Bose gives a sufficient condition for the existence of a (q, 5, 1) difference family in (GF(q), +)—where q ≡ 1 mod 20 is a prime power — with the property that every base block is a coset of the 5th roots of unity. Similarly he gives a sufficient condition for the existence of a (q, 4, 1) difference family in (GF(q, +)—where q ≡ 1 mod 12 is a prime power — with the property that every base block is the union of a coset of the 3rd roots of unity with zero. In this article we replace the mentioned sufficient conditions with necessary and sufficient ones. As a consequence, we obtain new infinite classes of simple difference families and hence new Steiner 2-designs with block sizes 4 and 5. In particular, we get a (p, 5, 1)-DF for any odd prime p ≡ 2, 3 (mod 5), and a (p, 4, 1)-DF for any odd prime p ≡ 2 (mod 3). © 1995 John Wiley & Sons, Inc.  相似文献   

4.
We show that a circulant complex Hadamard matrix of order n is equivalent to a relative difference set in the group C 4×C n where the forbidden subgroup is the unique subgroup of order two which is contained in the C 4 component. We obtain non-existence results for these relative difference sets. Our results are sufficient to prove there are no circulant complex Hadamard matrices for many orders.  相似文献   

5.
Let q be an odd natural number. We prove there is a cocyclic Hadamard matrix of order 210+tq whenever . We also show that if the binary expansion of q contains N ones, then there is a cocyclic Hadamard matrix of order 24N−2q.  相似文献   

6.
A matrix C of order n is orthogonal if CCT=dI. In this paper, we restrict the study to orthogonal matrices with a constant m > 1 on the diagonal and ±1's off the diagonal. It is observed that all skew symmetric orthogonal matrices of this type are constructed from skew symmetric Hadamard matrices and vice versa. Some simple necessary conditions for the existence of non-skew orthogonal matrices are derived. Two basic construction techniques for non-skew orthogonal matrices are given. Several families of non-skew orthogonal matrices are constructed by applying the basic techniques to well-known combinatorial objects like balanced incomplete block designs. It is also shown that if m is even and n=0 (mod 4), then an orthogonal matrix must be skew symmetric. The structure of a non-skew orthogonal matrix in the special case of m odd,n=2 (mod 4) and m?1/6n is also studied in detail. Finally, a list of cases with n?50 is given where the existence of non-skew orthogonal matrices are unknown.  相似文献   

7.
Wieferich pairs and Barker sequences   总被引:1,自引:0,他引:1  
We show that if a Barker sequence of length n > 13 exists, then either n = 189 260 468 001 034 441 522 766 781 604, or n > 2 · 1030. This improves the lower bound on the length of a long Barker sequence by a factor of more than 107. We also show that all but fewer than 1600 integers n ≤ 4 · 1026 can be eliminated as the order of a circulant Hadamard matrix. These results are obtained by completing extensive searches for Wieferich prime pairs (q, p), which are defined by the relation qp-1 o 1{q^{p-1} \equiv1} mod p 2, and analyzing their results in combination with a number of arithmetic restrictions on n.  相似文献   

8.
We study the numerical solution of a block system T m,n x=b by preconditioned conjugate gradient methods where T m,n is an m×m block Toeplitz matrix with n×n Toeplitz blocks. These systems occur in a variety of applications, such as two-dimensional image processing and the discretization of two-dimensional partial differential equations. In this paper, we propose new preconditioners for block systems based on circulant preconditioners. From level-1 circulant preconditioner we construct our first preconditioner q 1(T m,n ) which is the sum of a block Toeplitz matrix with Toeplitz blocks and a sparse matrix with Toeplitz blocks. By setting selected entries of the inverse of level-2 circulant preconditioner to zero, we get our preconditioner q 2(T m,n ) which is a (band) block Toeplitz matrix with (band) Toeplitz blocks. Numerical results show that our preconditioners are more efficient than circulant preconditioners.  相似文献   

9.
Symmetric nets are affine resolvable designs whose duals are also affine. It is shown that. up to isomorphism, there are exactly four symmetric (3, 3)-nets (v=b=27,k=9), and exactly two inequivalent 9×9 generalized Hadamard matrices over the group of order 3. The symmetric (3, 3)-nets are found as subnets of affine resolvable 2-(27, 9, 4) designs. Ten of the 68 non-isomorphic affine resolvable 2-(27, 9, 4) designs are not extensions of symmetric (3, 3)-subnets, providing the first examples of affine 2-(q3, q2, q2–1/q–1) designs without symmetric (q, q)-subnets.  相似文献   

10.
R. Craigen 《Discrete Mathematics》2008,308(13):2868-2884
We introduce power Hadamard matrices, in order to study the structure of (group) generalized Hadamard matrices, Butson (generalized) Hadamard matrices and other related orthogonal matrices, with which they share certain common characteristics. The new objects turn out to be as interesting, and perhaps as useful, as the objects that motivated them.We develop a basic theory of power Hadamard matrices, explore these relationships, and offer some new insights into old results. For example, we show that all 4×4 Butson Hadamard matrices are equivalent to circulant ones, and how to move between equivalence classes.We provide, among other new things, an infinite family of circulant Butson Hadamard matrices that extends a known class to include one of each positive integer order.Dedication: In 1974 Jennifer Seberry (Wallis) introduced what was then a totally new structure, orthogonal designs, in order to study the existence and construction of Hadamard matrices. They have proved their worth for this purpose, and have also become an object of interest for their own sake and in applications (e.g., [H.J.V. Tarok, A.R. Calderbank, Space-time block codes from orthogonal designs, IEEE Trans. Inf. Theory 45 (1999) 1456-1467. [26]]). Since then many other generalizations of Hadamard matrices have been introduced, including some discussed herein. In the same spirit we introduce a new object showing this kind of promise.Seberry's contributions to this field are not limited to her own work, of which orthogonal designs are but one example—she has mentored many young mathematicians who have expanded her legacy by making their own marks in this field. It is fitting, therefore, that our contribution to this volume is a collaboration between one who has worked in this field for over a decade and an undergraduate student who had just completed his third year of study at the time of the work.  相似文献   

11.
Generalized Hadamard matrices of order qn−1 (q—a prime power, n2) over GF(q) are related to symmetric nets in affine 2-(qn,qn−1,(qn−1−1)/(q−1)) designs invariant under an elementary abelian group of order q acting semi-regularly on points and blocks. The rank of any such matrix over GF(q) is greater than or equal to n−1. It is proved that a matrix of minimum q-rank is unique up to a monomial equivalence, and the related symmetric net is a classical net in the n-dimensional affine geometry AG(n,q).  相似文献   

12.
Recent work on integral equivalence of Hadamard matrices and block designs is generalized in two directions. We first determine the two greatest invariants under integral equivalence of the incidence matrix of a symmetric balanced incomplete block design. This enables us to write down all the invariants in the case wherekλ is square-fre. Some other results on the sequence of invariants are presented. Secondly we consider the existence of inequivalent Hadamard matrices under integral equivalence. We show that if there is a skew-Hadamard matrix of order 8m then there are two inequivalent Hadamard matrices of order 16m, that and there are precisely eleven inequivalent Hadamard matrices of order 32.  相似文献   

13.
R. J. Turyn introduced complex Hadamard matrices and showed that if there is a complex Hadamard matrix of order c and a real Hadamard matrix of order h> > 1, then there is a real Hadamard matrix of order he. Previously, complex Hadamard matrices were only known for a few small orders and the orders for which symmetric conference matrices were known. These latter are known only to exist for orders which can be written as 1+a2 +b2 where a, b are integers. We give many constructions for new infinite classes of complex Hadamard matrices and show that they exist for orders 306,650, 870,1406,2450 and 3782: for the orders 650, 870, 2450 and 3782, a symmetric conference matrix cannot exist.  相似文献   

14.
In this paper we give a new series of Hadamard matrices of order 2 t . When the order is 16, Hadamard matrices obtained here belong to class II, class V or to class IV of Hall's classification [3]. By combining our matrices with the matrices belonging to class I, class II or class III obtained before, we can say that we have direct construction, namely without resorting to block designs, for all classes of Hadamard matrices of order 16.Furthermore we show that the maximal excess of Hadamard matrices of order 22t is 23t , which was proved by J. Hammer, R. Levingston and J. Seberry [4]. We believe that our matrices are inequivalent to the matrices used by the above authors. More generally, if there is an Hadamard matrix of order 4n 2 with the maximal excess 8n 3, then there exist more than one inequivalent Hadamard matrices of order 22t n 2 with the maximal excess 23t n 3 for anyt 2.  相似文献   

15.
Summary In this paper, we present a class of fractional factorial designs of the 27 series, which are of resolutionV. Such designs allow the estimation of the general mean, the main effects and the two factors interactions (29 parameters in all for the 27 factorial) assuming that the higher order effects are negligible. For every value ofN (the number of runs) such that 29≦N≦42, we give a resolutionV design that is optimal (with respect to the trace criterion) within the subclass of balanced designs. Also, for convenience of analysis, we present for each design, the covariance matrix of the estimates of the various parameters. As a by product, we establish many interesting combinatorial theorems concerning balanced arrays of strength four (which are generalizations of orthogonal arrays of strength four, and also of balanced incomplete block designs with block sizes not necessarily equal).  相似文献   

16.
If there is a Hadamard design of order n, then there are at least 28n−16−9log n non-isomorphic Hadamard designs of order 2n. Mathematics Subject Classificaion 2000: 05B05  相似文献   

17.
A Hadamard matrix H of order 16t2 is constructed for all t for which there is a Hadamard matrix of order 4t, in such a way that each row of H contains exactly 8t2 + 2t ones. As a consequence a new method of constructing the symmetric block designs with parameters (16t2, 8t2 + 2t, 4t2 + 2t) for all t for which there is a Hadamard matrix of order 4t is given.  相似文献   

18.
It is shown that ifq is a prime power then there are Williamson-type matrices of order
  1. 1/2q 2(q + 1) whenq ≡ 1 (mod 4).
  2. 1/4q 2(q + 1) whenq ≡ 3 (mod 4) and there are Williamson-type matrices of order 1/4(q + 1).
This gives Williamson-type matrices for the new orders 363, 1183, 1805, 2601, 3174, 5103. The construction can be combined with known results on orthogonal designs to give an Hadamard matrix of the new order 33396 = 4 ? 8349.  相似文献   

19.
In this paper, we present two constructions of divisible difference sets based on skew Hadamard difference sets. A special class of Hadamard difference sets, which can be derived from a skew Hadamard difference set and a Paley type regular partial difference set respectively in two groups of orders v 1 and v 2 with |v 1 − v 2| = 2, is contained in these constructions. Some result on inequivalence of skew Hadamard difference sets is also given in the paper. As a consequence of Delsarte’s theorem, the dual set of skew Hadamard difference set is also a skew Hadamard difference set in an abelian group. We show that there are seven pairwisely inequivalent skew Hadamard difference sets in the elementary abelian group of order 35 or 37, and also at least four pairwisely inequivalent skew Hadamard difference sets in the elementary abelian group of order 39. Furthermore, the skew Hadamard difference sets deduced by Ree-Tits slice symplectic spreads are the dual sets of each other when q ≤ 311.   相似文献   

20.
This article derives from first principles a definition of equivalence for higher‐dimensional Hadamard matrices and thereby a definition of the automorphism group for higher‐dimensional Hadamard matrices. Our procedure is quite general and could be applied to other kinds of designs for which there are no established definitions for equivalence or automorphism. Given a two‐dimensional Hadamard matrix H of order ν, there is a Product Construction which gives an order ν proper n‐dimensional Hadamard matrix P(n)(H). We apply our ideas to the matrices P(n)(H). We prove that there is a constant c > 1 such that any Hadamard matrix H of order ν > 2 gives rise via the Product Construction to cν inequivalent proper three‐dimensional Hadamard matrices of order ν. This corrects an erroneous assertion made in the literature that ”P(n)(H) is equivalent to “P(n)(H′) whenever H is equivalent to H′.” We also show how the automorphism group of P(n)(H) depends on the structure of the automorphism group of H. As an application of the above ideas, we determine the automorphism group of P(n)(Hk) when Hk is a Sylvester Hadamard matrix of order 2k. For ν = 4, we exhibit three distinct families of inequivalent Product Construction matrices P(n)(H) where H is equivalent to H2. These matrices each have large but non‐isomorphic automorphism groups. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 507–544, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号