首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The synthesis of a new, paramagnetic closo-[(8-(-CH2CH2O)2-1,2-C2B9H10)(1′,2′-C2B9H11)-3,3′-Fe]0 (3) is reported. This compound can serve as a versatile building block for construction of both anionic and zwitterionic derivatives, as exemplified by the synthesis of a series of compounds of general formula closo-[(8-X-(CH2CH2O)2-1,2-C2B9H10)(1′,2′-C2B9H11)-3,3′-Fe], bearing organic end groups (X = NC5H5 (4), (C6H5)3P (5), OH (6), and 2-O(1-CH3O-C6H4) (7)) attached to the cluster by a diethyleneglycol spacer. Molecular structures of 3, 4, 5 and 7 were determined by single-crystal X-ray diffraction analysis and by the long-time neglected method of paramagnetic, high field NMR (1H, 13C and 11B) spectroscopy.  相似文献   

2.
Dioxomolybdenum(VI) complexes [MoO2(B1)H2O] (1), [MoO2(B2)EtOH] (2), [MoO2(B3)EtOH] (3) and [MoO2(B4)EtOH] (4) were synthesized using the Schiff base ligands H2B1(previously reported), H2B2, H2B3 and H2B4, respectively. These ligands were prepared by condensation of 1-(2-pyridyl) 5-methyl 3-pyrazole carbohydrazide with salicylaldehyde, o-hydroxy acetophenone, 5-bromo salicylaldehyde and 5-nitro salicylaldehyde respectively. Due to the presence of a substituted 1-(2-pyridyl) pyrazole unit, ligands H2B1, H2B2 and H2B3 exhibit fluorescent emissions, and the most intense emission was obtained for H2B3. H2B4 is incapable of showing fluorescence emission. As the ligands are capable of using different binding modes, according to the demands of the guest metal ions, their emission properties also change accordingly. The dioxomolybdenum(VI) complex of the ligand H2B1, i.e. complex 1, shows quenched emission compared to H2B1. Again when Cu2+, Co2+ or Ni2+ ions are added to a solution of 1, in each case a new complex of Cu2+ Co2+ or Ni2+ is formed in solution and further quenching was observed. However, with Zn2+ input to a solution of 1, fluorescence recovery was observed up to the level of the free ligand. The copper(II) complex of H2B1 (complex 5), produced by adding equivalent amount of Cu2+ salt to a solution of 1, was isolated and characterized. One of the dioxomolybdenum(VI) complexes, 3, when subjected to an oxo-transfer reaction with PPh3 produces complex [MoO(B3)CH3CN] (6). Complex 6 shows reduced fluorescence emissions compared to 3 in the solid phase. These observations open up the possibilities for these ligands to work as fluorescent signaling system with different metal ion inputs. All the complexes are characterized by elemental analyses, electronic spectra, IR, 1H NMR, magnetic measurements, EPR and by cyclic voltammetry. Complexes 1 and 5, as well as the ligands H2B2 and H2B3, have been crystallographically characterized.  相似文献   

3.
Halogenation of 9-dimethylsulfonium-7,8-dicarba-nido-undecaborane [9-SMe2-7,8-C2B9H11] with N-chlorosuccinimide, bromine and iodine gave the expected corresponding halogen derivatives [9-SMe2-11-X-7,8-C2B9H10], where X = Cl (1), Br (2), I (3). In the bromination reaction, [9-SMe2-6-Br-7,8-C2B9H10] (4) was isolated as a minor product being the first example of substitution at a “lower” belt of the 7,8-dicarba-nido-undecaborate cage. The use of excess of bromine resulted in dibromo derivative [9-SMe2-6,11-Br2-7,8-C2B9H9] (5). Structures of the compounds prepared were determined using 11B-11B COSY NMR spectroscopy (for all halogen derivatives) and single crystal X-ray diffraction (for compounds 2, 3, and 5).  相似文献   

4.
Cluster opening of [2-Cp-9-tBuNH-closo-2,1,7,9-FeC3B8H10] (1) , followed by oxidation, generates complexes [2-Cp-8-tBuNH-closo-2,1,8,10-FeC3B8H10] (2), [2-Cp-4-tBuNH-closo-2,1,4,12-FeC3B8H10] (3), [2-Cp-1-tBuNH-closo-2,1,7,10-FeC3B8H10] (4), and [1-Cp-10-tBuNH-closo-1,2,3,10-FeC3B7H9] (5). Another variation of the syntheses led to compounds [2-Cp-closo-2,1,8,10-FeC3B8H11] (6), [4-Cp-1-tBuNH-closo-4,1,6,8,-FeC3B9H11] (7) and to two isomeric, not yet fully characterized, 13-vertex compounds of general nido structure [tBuNH-Cp-FeC3B9H12] (8 and 9).  相似文献   

5.
Synthesis procedures for coordination compounds of iron(II) 1,5,6,10-tetra(R)-7,8-dicarba-nido-undecaborates(-1) (carboranes) with tris(pyrazol-1-yl)methane (HC(pz)3) of the composition [Fe{HC(pz)3}2]A2·nH2O (A = (7,8-C2B9H12)? (I), (1,5,6,10-Br4-7,8-C2B9H8)? (II), (1,5,6,10-I4-7,8-C2B9H8)? (III), n = 0–2) are developed. The compounds are studied by static magnetic susceptibility in the temperature range of 160–500 K, electron (diffuse reflectance spectra), IR, and Mössbauer spectroscopy methods. It is shown that the complexes have high-temperature spin-crossover 1 A 1 ? 5 T 2. Transition temperatures (T c) for I–III are 370 K, 380 K, and 400 K respectively. Spin-crossover is accompanied by thermochromism (color change: pink ? white).  相似文献   

6.

The oxidation of 1,2-C2B10H12 (1) with 100% nitric acid was studied in two solvents (CH2C12 and CCl4). Under the action of superacid (CF3SO3H), the compound 9-HO-1,2-C2B10H11 (2) gives the onium cation 9-H2O+-1,2-C2B10H11 involved in the salt [9-H2O+-1,2-C2B10Hn]-CF3SO3?, as demonstrated by uB NMR spectroscopy. The experimental and simulated uB NMR spectra of the cation 9-H2O+-1,2-C2B10H11 are in satisfactory agreement with each other. In the presence of a base, compound 2 is transferred from an ethereal solution to an aqueous alkaline solution giving the anion 9-O?- 1,2-C2B10H11. The structure of compound 2 was confirmed by 1H, 11B, 11B1H, 11B-11B COSY NMR spectroscopy, IR spectroscopy, and gas chromatography mass spectrometry and was additionally established by X-ray diffraction.

  相似文献   

7.
We report two methods for preparing N-arylammonio, N-pyridyl and N-arylamino dodecaborates: heating of the tetrabutylammonium salt of dodecahydro-closo-dodecaborate(2-) with aryl and pyridyl amines, or nucleophilic attack of [closo-B12H11NH2]2− on a strongly deactivated aromatic system. With aryl amines we obtained [1-closo-B12H11N(R1)2C6H5] (R1 = H, CH3). With 4-(dimethylamino)pyridine, [1-closo-(B12H11NC5H4)-4-N(CH3)2], with a bond between the boron and the pyridinium nitrogen, was obtained. A presumable mechanism for this kind of reactions is reported. By nucleophilic substitution, two products, [1-closo-(B12H11NHC6H3)-3,4-(CN)2]2− and [1-closo-(B12H11NHC6H2)-2-(NO2)-4,5-(CN)2]2−, were formed with 4-nitrophthalonitrile and 1-chloro-2,4-dinitrobenzene gave [1-closo-(B12H11NHC6H3)-2,4-(NO2)2]2−. For [1-closo-B12H11N(CH3)2C6H5] and [1-closo-(B12H11NHC6H3)-2,4-(NO2)2]2− single crystal X-ray structures were obtained.  相似文献   

8.
The reaction of Li[closo-1-Me-1,2-C2B10H10] with cyclohexene oxide produced closo-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (1) in 86% yield. Decapitation of (1) with potassium hydroxide in refluxing ethanol gave the corresponding cage-opened potassium salt of the carborane anion, [nido-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B9H10] (2) in 82% yield. Deprotonation of (2) with two equivalents of n-butyllithium in THF at −78 °C, followed by its further reaction with anhydrous MCl4 · 2THF (M = Ti, Zr) produced the corresponding d0-half-sandwich metallacarboranes, closo-1-M(Cl)-2-Me-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (3 M = Zr; 4 M = Ti), in 59% and 51% yields, respectively. Reaction of Li[closo-1,2-C2B10H11] with Merrifield’s peptide resin (1%) in refluxing THF gave the ortho-carborane-functionalized polymer (5) in 88% yield. The corresponding closo-1-polystyryl-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (6) was produced in 94% yield by refluxing a mixture of the lithium salt of (5) and cyclohexene oxide in THF for 2 days. Compound (6) was decapitated, deprotonated and then reacted with ZrCl4 · 2THF to produce a polymer-supported d0-half-sandwich metallacarborane closo-1-Zr(Cl)-2-polystyryl-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (7) in 41% yield. Compounds (3) and (7), in the presence of MMAO-7 (13% ISOPAR-E), were found to catalyze the polymerization of ethylene and vinyl chloride in toluene to give high molecular weight PE (9.4 × 103 (Mw/Mn = 1.8)) and PVC (2.1 × 103 (Mw/Mn = 1.6)), respectively.  相似文献   

9.
New radical cation salts (BEDT-TTF)2[3,3′-Co(1,2-C2B9H11)2] (1), (BEDT-TTF)2[8-I-3,3′-Co(1,2-C2B9H10)(1′,2′-C2B9H11)] (2), (BMDT-TTF)[3,3′-Co(1,2-C2B9H11)2] (3) and (TMTSF)2[3,3′-Fe(1,2-C2B9H11)2] (4) were synthesized and their crystal structures and electrical conductivities were determined. Compound 4 is isostructural to the earlier reported Co analogue. All the radical cation salts synthesized are semiconductors.  相似文献   

10.
The 8,9′-[closo-{3-Co(η5-C5H5)-1,2-C2B9H10}]2 (1) species, in which two large closo-CoC2B9 sub-clusters are connected by a B-B bond, is unexpectedly obtained from the reaction of closo-[3-Co(η5-C5H5)-1,2-C2B9H11] with sulfur in the presence of aluminium chloride under reflux conditions. The solid state conformation of 1 seems to be the result of a pair of intramolecular C-H?H-B dihydrogen bonds between the protonic H atoms of the C5H5 fragment of a sub-cluster and the hydridic H atoms of the C2B9H11 fragment in the other sub-cluster in 1.  相似文献   

11.
The reaction of gaseous HCl with either the disodium or dilithium compound of the [nido-2,4-(SiMe3)2-2,4-C2B4H4]2− dianion (I) in 1:1 stoichiometry in THF produced the monoprotonated species 1-Na(THF)2-2,4-(SiMe3)2-2,4-C2B4H5 (II) or 1-Li(THF)2-2,4-(SiMe3)2-2,4-C2B4H5 (III), in 81% and 80% yields, respectively. This method proved superior to that involving the direct reduction of the closo-C2B4 carborane by metal hydrides. II and III were characterized by elemental analysis, 1H, 11B and 13C NMR and IR spectra. Compound II was recrystallized from a mixture THF, hexane and TMEDA (1:2:1) to isolate colorless crystals of the mixed solvated species, 1-(THF)-1-(TMEDA)-1-Na-2,4-(SiMe3)2-2,4-C2B4H5 (IV), which were subsequently used for X-ray diffraction studies. The structure of IV showed that the capping metal occupied the apical position above the open C2B3 face of the carborane and that a hydrogen atom was bridging the two adjacent boron atoms on that face. The 11B and 13C NMR spectra calculated by GIAO (gauge independent atomic orbital) methods at the 6-311G** level on the B3LYP/6-31G* optimized geometries of IIII, and a number of related nido- and closo-carboranes, gave excellent agreement with experiment, even in compounds where electron correlation effects are known to be important.  相似文献   

12.
A series of chain multinuclear cobaltacarboranes of the general formula [(C2B9H11)2Co n (C2B8H10) n?1] n?, wheren = 4 to 7, were synthesized. These compounds, containing derivatives ofortho-carborane(12) as ligands and dicarbollide C2B9H1 2? and bidentate dicarbacanastide C2B8H11 4? ligands, were studied by IR, UV, and H and11B NMR spectroscopy. The nonequivalence of the dicarbacanastide ligands that occupy different positions in the chain with respect to the terminal dicarbollide ligands was discovered.  相似文献   

13.
Complex Cp∗PtCl2 (Cp∗ = η-C4Me4) reacts with the carborane anions [7,8-C2B9H11]2− and [9-SMe2-7,8-C2B9H10] giving platinacarboranes Cp∗Pt(η-7,8-C2B9H11) (1) and [Cp∗Pt(η-9-SMe2-7,8-C2B9H10)]+ (2), respectively. Reactions of the [Cp∗Pt]2+ fragment (as a labile nitromethane solvate) with the sandwich compounds Cp∗Fe(η-C5H3Me2BMe) and Cp∗Rh(η5-C4H4BPh) afford the triple-decker cations [Cp∗Pt(μ-η:η-C5H3Me2BMe)FeCp∗]2+ (3) and [Cp∗Pt(μ-η55-C4H4BPh)RhCp∗]2+ (4) with bridging boratabenzene and borole ligands. The structures of 1 and 3(CF3SO3)2 were determined by X-ray diffraction.  相似文献   

14.
A reaction of complexes CoCl2(dppe) (dppe is the 1,2-bis(diphenylphosphino)ethane) or CoCl2(dppp) (dppp is the 1,3-bis(diphenylphosphino)propane) with [K][7,8-nido-C2B9H12] upon reflux in benzene led to the mixed ligand closo-cobaltacarboranes [3,3-(Ph2P(CH2) n PPh2)-3-Cl-closo-3,1,2-CoIIIC2B9H11] (n = 2 and 3, respectively) in moderate yields (34 and 16%). The structure of the 18-electron complexes in solution and the solid state was studied by NMR and IR spectroscopy, the structure in the case of the closo-complex with dppe-ligand was confirmed by X-ray crystallography.  相似文献   

15.
Addition of ethynylferrocene to nido-1,2-(CpRuH)2B3H7 (1) at ambient temperature leads to nido-1,2-(CpRu)2(1,5-μ-C{Fc}Me)B3H7 (2, 3) and closo-4-Fc-1,2-(CpRuH)2-4,6-C2B2H3 (4). Compounds 2 and 3 represent a pair of geometric isomers, nido-species in which the regiochemistry of the alkyne reduction conforms to the Markovnikoff rule. Compound 4 is an octahedral structure in which the inserted alkyne is on an open face of the closo cluster.  相似文献   

16.
An ab initio molecular orbital study shows that the face hydrogen of the zwitterionic hemiousene [7.111]-nido-(12)-7,8-dicarbahemiousene (C7H6+-B9C2H11) is in a fluxional double minimum. It is primarily associated with B10 and forms unsymmetrical three-center bridges between B10-B9 or B10-B11. The transition barrier is about 2.5 kcal mol−1. This structure is similar to that of the unsubstituted C2B9H12 ion and demonstrates that the cationic tropyliumyl substituent has little effect on the face. The hypothetical completely symmetrical ion B11H123− does not have a centered face hydrogen. The hydrogen is involved in a short, symmetrical bridge between face borons, and would be presumably fully fluxional in solution.  相似文献   

17.
Synthesis and Crystal Structures of [P(C6H5)4][1-(NH3)B10H9] and Cs[(NH3)B12H11] · 2CH3OH The reduction of [1-(NO2)B10H9]2? with aluminum in alkaline solution yields [1-(NH3)B10H9]? and by treatment of [B12H12]2? with hydroxylamine-O-sulfonic acid [(NH3)B12H11]? is formed. The crystal structures of [P(C6H5)4][1-(NH3)B10H9] (triclinic, space group P1 , a = 7.491(2), b = 13.341(2), c = 14.235(1) Å, α = 68.127(9), β = 81.85(2), γ = 86.860(3)°, Z = 2) and Cs[(NH3)B12H11] · 2CH3OH (monoclinic, space group P21/n, a = 14.570(2), b = 7.796(1), c = 15.076(2) Å, β = 111.801(8)°, Z = 4) reveal for both compounds the bonding of an ammine substituent to the cluster anion.  相似文献   

18.
The treatment of 1,2-, 1,7- and 1,12-carbaborane lithiated isomers with [3,3′-Co-8-(CH2CH2O)2-(1,2-C2B9H10)-(1′,2′-C2B9H11)] (1) at molar ratios 1:1 or 1:2 at room temperature in THF leads generally to the formation of a series of orange double-cluster mono and dianions. These were characterized by NMR and MS methods as [1′′-X-1′′,2′′-closo-C2B10H11], [2]; [1′′-X-1′′,7′′-closo-C2B10H11], [3] and [1′′-X-1′′,12′′-closo-C2B10H11], [4] for the monoanions, whereas [1′′,2′′-X2-1′′,2′′-closo-C2B10H10]2−, [2]2−; [1′′,7′′-X2-1′′,7′′-closo-C2B10H10]2−, [3]2−; and [1′′,12′′-X2-1′′,12′′-closo-C2B10H10]2−, [4]2− for the dianions (where X = 3,3′-Co-8-(CH2CH2O)2-(1,2-C2B9H10)-1′,2′-(C2B9H11)). Moreover, these borane-cage subunits can be easily modified via attaching variable substituents onto cage carbon and boron vertices, which makes these compounds structurally flexible potential candidates for BNCT of cancer and HIV-PR inhibition.  相似文献   

19.
Preparation, 11B NMR, Vibrational Spectra, and Crystal Structure of [(C5H5N)2CH2][1-(O2N)B10H9] By reaction of [B10H10]2? in aqueous acetonitrile with a saturated solution of NO2 in dichloromethane [1-(O2N) · B10H9]2? and [B10H9(NO)B10H9]3? are formed which can be separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound. The X-ray structure determination of [(C5H5N)2CH2][1-(O2N)B10H9] (triclinic, space group P1 , a = 7.1530(9), b = 8.3753(8), c = 15.198(2) Å, α = 96.00(1), β = 95.48(1), γ = 95.60(1)°, Z = 2) reveals the coordination of the NO2 group via N with a B1? N distance of 1.535(5) Å and an O2? N? O1 angle of 119.3(3)°. The 11B NMR spectrum exhibits the characteristic feature (1 : 1 : 4 : 4) of an apical monosubstituted B10 cluster with a strong downfield shift of the ipso-B atom at +13.4 ppm. The IR and Raman spectra show strong NO stretching vibrations at 1381 und 1420 cm?1.  相似文献   

20.
The heterometallic cluster complexes {(p-Cymene)Ru[S2C2(B10H10)]}Mo(CO)2{(CO)3Ru[S2C2(B10H10)]} (2) and {(p-Cymene)Ru[Se2C2(B10H10)]}2Mo(CO)2 (3) (p-Cymene = η6-4-isopropyl-toluene) have been synthesized from the reactions of 16-electron half-sandwich ruthenium 1,2-dichalcogenolate carborane complexes (p-Cymene)Ru[E2C2(B10H10)] (E = S(1a), Se(1b)) with Mo(CO)3(Py)3 in the presence of BF3 · Et2O. The complexes of 2 and 3 were characterized by elemental analysis and IR, NMR spectra. The molecular structure of 2 has been characterized by single-crystal X-ray diffraction analysis. Complex 2 is unsymmetrical and the two Ru–Mo single bonds (2.7893(14), 2.8189(13) Å) are each supported by a symmetrically bridging o-carborane-1,2-dithiolato ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号