首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxo(tert-butylimido) or bis(tert-butylimido)osmium(VI) porphyrins Os(Por)(O)(NBut) and Os(Por)(NBut)2, [Por=meso-tetrakis(p-tolyl)porphyrinato (TTP) and meso-tetrakis(4-chlorophe-nyl)porphyrinato (4-Cl-TPP)] were synthesized by air oxidation of bis(tert-butylamme)osmium(II) porphyrins [Os(Por)(H2NBut)2 (Por=TPP, 4-Cl-TPP], depending on whether tert-butylamine is present. The bis(tert-butylamine)ruthenium(II) porphyrins [Ru(Por)(H2NBut)2, Por=TTP, 4-Cl-TPP] can undergo bromine oxidation to give oxo(tert-butylimido)ruthenium(VI) complexes in quantitative yields. All these new complexes were characterized by 1H NMR, UV-Visible and IR spectroscopy. The X-ray crystal structures of Os(TTP)(O)(NBut).EtOH and Os(4-Cl-TPP)(NBut)2 have been determined. Crystal data: for Os(TTP)(O)(NBut).EtOH: monoclinic, space group P21/c, a=1.3546(6) nm, b=2.3180(3) nm, c=1.6817(3) nm, B=90.84(2), V=527.97(1) nm3, Z=4. The Os=O and Os=NBut distances in Os(TTP)(O)(NBut).EtOH are 0.1772(7) nm and 0.1759(9) nm, respectively. The av  相似文献   

2.
Two hexaruthenium carbonyl clusters [Ru6(CO)15(μ-CO)2(μ4-NH) (μ-OMe){μ3-η2-N(H)C(O)OMe}] and [Ru6(CO)16(μ-CO)2-(μ4-NH)(μ-OMe)(μ-NCO)]2 have been isolated from the pyrolysis of H2Ru3(CO))9NOCH3, and single-crystal X-ray structure analysis shows that both 1 and 2 have a square planar arrangement of four ruthenium atoms capped by a μ4-nitrene ligand, with two additional ruthenium atoms bridging two opposite RuRu edges of the square base to form a ‘boat’ form metal framework.  相似文献   

3.
Two new mixed metal cluster complexes PtRu3(CO)10(PPh3)(3-S)2,3 14% yield and PtRu3(CO)9(PPh3)2(3-S)2,4 23% yield were obtained from the reaction of Ru3(CO)9(3-S)2,1 with Pt(PPh3)2(C2H4) at 0°C. The cluster of4 consists of a spiked triangle of four metal atoms with two triply bridging sulfido ligands. The reaction of Ru4(CO)11(4-S)2,2 with Pt(PPh3)2(C2H4) yielded the expanded mixed-metal cluster complex PtRu4(CO)12(PPh3)(4-S)2,5 in 12% yield. The structure of the cluster5 can be described as a pentagonal bipyramid of five metal atoms and two sulfido ligands with one metal-metal bond missing. Compounds4 and5 were characterized by a single-crystal X-ray diffraction analyses.  相似文献   

4.
Summary The thiolato-bridged dinuclear compounds [Rh(-SR)-(COD)]2, where R=p-C6HF4 (1),p-C6H4F (2) and CF3 (3), are obtained from the chloro-bridged analogue by ligand exchange.Compound (1) crystallizes in the space group P1 with a=9.740(3)Å, b=11.642(4)Å, c=13.997(6)Å, =103.87(3)°, =106.98(3)° and =105.10(2)°; z=2. In this dinuclear molecule both Rh atoms have a square planar coordination sharing one edge, namely the two sulphur bridging atoms. The Rh—Rh separation of 2.96 Å is consistent with at most a very weak metal-metal interaction. Upon addition of CO the dimeric [Rh(-SR)(CO)2]2 (4), (5) and (6) are obtained, but addition of PPh3 affords the monomeric species [Rh(SR)(PPh3)-(COD)] (7), (8) and (9). Reactions of the dimeric tetracarbonyl derivatives with PPh3 vary with the nature of R; [Rh(-SR)(PPh3)(CO)]2 is obtained when R=p-C6H4F (10) and CF3 (11) but monomeric [Rh(SR)-(PPh3)(CO)2] (12) is produced when R=p-C6HF4. The latter mononuclear compounds, with R=p-C6H4F (13) and CF3 (14), are also formed by reaction of [Rh(SR)-(PPh3)(COD)] with CO.  相似文献   

5.
6.
In recent years the chemistry of mono- or hetero-binuclear complexes containing metal-S(C) bonding modes is a very active field of research. Many useful applications of this kind of complexes have been exploited, such as industrial catalytic hydrodesulfurization (HDS)1,2 and transition metals mediated organic synthesis3-5. In this paper we report that the reduction and subsequent protonation of hetero-binuclear complex [MnRe(CO)6(-S2CPPri3)] occur with cleavage of metal-metal bond and o…  相似文献   

7.
8.
Reaction of [Os3(μ-H)2(CO)10] with 3,4-dimethyl-1-phenylphosphole in refluxing cyclohexane affords two substituted triosmium clusters: [Os3(CO)9(μ-H)(μ3112-PhPC4H3Me2)] (1) and [Os3(CO)9(H)(μ212-PhPC4H4Me2)] (2), of which cluster 2 exhibits two chromatographically non-separable isomeric forms attributed to terminal and bridging coordination of the hydride ligand, respectively. When this reaction is performed in refluxing THF, the only product is the cluster [Os3(CO)9(μ-OH)(μ-H)(η1-PhPC4H2Me2)] (3). Crystallographic information obtained for cluster 3 shows the phosphole ligand occupying an equatorial position, as expected, while the OH group is asymmetrically bridging unlike previously reported similar compounds. Additionally, interaction of the labile cluster [Os3(CO)11(CH3CN)] with cyanoethyldi-tert-butylphosphine in dichloromethane at room temperature was found to give [Os3(CO)111- t Bu2PC2H4CN)] (4) as the only product; its crystallographic characterization shows that the phosphine ligand coordinates by means of the phosphorus atom in an equatorial fashion, analogous to compound 3.  相似文献   

9.
Complexes of CuI with tertiary phosphine chalcogenides are described. CuI reacts with Ph3PS in MeCN/CH2Cl2 to form {CuI(Ph3PS)(MeCN)} and CuCl reacts with 1,2-ethylene-bis(tertiary phosphine selenide) {dpeSe2} in MeCN to yield {CuCl(dpeSe2)}. Both compounds exist as halogen-bridged centrosymmetric dimers: [Cu2(-I)2-(Ph3PS)2(MeCN)2] (1) and [Cu2(-Cl)2(dpeSe2)2] (2) respectively. Compound (1) has almost symmetric Cu—I bonds, d(Cu—I) = 2.6503(8) Å and d(Cu—I) = 2.7196(9) Å, and each Cu is further bonded to a S atom [d(Cu—S) = 2.3444(13) Å] from Ph3PS and to a N atom [d(Cu—N) = 2.030(5) Å] from MeCN. Compound (2) has unequal Cu—Cl bonds, 2.6390(19) and 2.2806(18) Å and nearly equal Cu—Se bonds [2.4042(11) and 2.4060(11) Å]. The geometry about each Cu center in both cases is distorted tetrahedral. The Cu—Cu bond distance in (2) is 3.249(2) Å as compared with 3.4141(16) Å in (1). MeCN is bonded strongly to CuI as the excess of Ph3PS failed to remove it from the coordination sphere. Compound (2) represents the first structurally characterised example of copper(I) with a bis(tertiary phosphine selenide) (dpeSe2) acting as a bridging ligand.  相似文献   

10.
Microwave heating allows for the high-yield, one-step synthesis of the known triosmium complexes Os3(μ-Br)2(CO)10 (1), Os3(μ-I)2(CO)10 (2), and Os3(μ-H)(μ-OR)(CO)10 with R = methyl (3), ethyl (4), isopropyl (5), n-butyl (6), and phenyl (7). In addition, the new clusters Os3(μ-H)(μ-OR)(CO)10 with R = n-propyl (8), sec-butyl (9), isobutyl (10), and tert-butyl (11) are synthesized in a microwave reactor. The preparation of these complexes is easily accomplished without the need to first prepare an activated derivative of Os3(CO)12, and without the need to exclude air from the reaction vessel. The syntheses of complexes 1 and 2 are carried out in less than 15 min by heating stoichiometric mixtures of Os3(CO)12 and the appropriate halogen in cyclohexane. Clusters 36 and 810 are prepared by the microwave irradiation of Os3(CO)12 in neat alcohols, while clusters 7 and 11 are prepared from mixtures of Os3(CO)12, alcohol and 1,2-dichlorobenzene. Structural characterization of clusters 2, 4, and 5 was carried out by X-ray crystallographic analysis. High resolution X-ray crystal structures of two other oxidative addition products, Os3(CO)12I2 (12) and Os3(μ-H)(μ-O2CC6H5)(CO)10 (13), are also presented.  相似文献   

11.
A series of novel chiral complexes with ,1and ,2 coordination of organic ligands were prepared by reactions of Os3(CO)11(MeCN) and (-H)Os3(CO)10(-OH) withL--serine ethyl ester and ethanolamine. The diastereomeric cluster complexes with serine ligands were separated by crystallization or chromatography. The structures of the compounds obtained were confirmed by1H NMR and IR spectroscopy, mass-spectrometry, elemental analysis, and X-ray diffraction analysis.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 525–530, March, 1994.  相似文献   

12.
The reaction of [Os3(CO)12 with [12]aneS3 ([12]aneS3  {(CH2)3S}3) in octane for 6 h, under reflux, led to isolation of two products [Os3(CO)11([12]aneS3)] (1) and [Os4(CO) 13([12]aneS3)] (2), while with [Ru3(CO)12] under similar conditions, in THF, a number of products were obtained, including [Ru4(CO)11([12]aneS3)] (3), [Ru5(CO)13([12]aneS3)] (4), and [Ru6(CO)16([12]aneS3)] (5). An X-ray diffraction study of 2 shows that the macrocycle is coordinated to the ‘wingtips’ of an Os4 butterfly through the two electron pairs on one sulphur atom, while in 5 all three sulphur atoms of the macrocycle coordinate to two of the Ru atoms in a spiked edge-bridged tetrahedral metal framework.  相似文献   

13.
Treatment of closo-[Ru44-PPh)22-CO)(CO)10] with acetylene under ambient conditions leads to the insertion of the acetylene into the skeletal framework of the cluster and the formation of [Ru44-PPh){μ43-P(Ph)CHCH}(μ2-CO)(CO)10], the structure of which has been determined X-ray crystallographically.  相似文献   

14.
The in situ reactions of the [Et3NH]+ and [MgBr]+ salts of [(μ-RSe)(μ-CO)Fe2(CO)6] (1) anions with PhC(Cl)NPh gave single butterfly complexes (μ-RSe)(μ-PhCNPh)Fe2(CO)6 (2, R=Ph; 3, R=p-MeC6H4; 4, R=Et), whereas those of the [Et3NH]+ salts of 1 with R′NCS afforded single butterfly complexes (μ-RSe)[μ-R′N(H)CS]Fe2(CO)6 (5, R=Ph, R′=Ph; 6, R=p-MeC6H4 R′=Ph; 7, R=p-MeC6H4, R′=PhCO; 8, R=p-MeC6H4, R′=PhCH2). Compound 8 could also be prepared by reaction of the [MgBr]+ salt of 1 (R=p-MeC6H4) with PhCH2NCS followed by treatment with CF3CO2H. More interestingly, while the [Et3NH]+ salt of 1 (R=Ph) reacted with Et3OBF4 to give a carbyne ligand-bridged single butterfly complex (μ-PhSe)(μ-EtOC)Fe2(CO)6 (9), reaction of the [Et3NH]+ salt of 1 (R=Ph) with MeAsI2 produced a MeAsAsMe ligand-bridged double butterfly complex [(μ-PhSe)(μ-MeAs)Fe2(CO)6]2 (10). All the new complexes, 210, were characterized by elemental analysis and various spectroscopic methods, for complexes 8 and 10, the structures were also confirmed by X-ray diffraction techniques.  相似文献   

15.
Reduction of the heptaosmium cluster [Os7(CO)21] With [Et4N][NH4) gives the cluster dianion [Os7(CO)20]2–,1, in high yield. The reaction of the dianion with [AuPR 3Cl] (R=Et or Ph) in the presence of TlPF6 forms [Os7((CO)20(AuPR 3)2] [R=Et (2a);R = Ph(2b)] in 80% yield, while the corresponding reaction with (Os(C6H6)(CH3CN)3]2+ gives [Os8(CO)20 ( 6-C6H6)] (3) in reasonable yield (ca. 30%). The dianion,1, and the clusters2 and3 have been fully characterized by bout spectroscopic and crystallographic methods. The crystal structure of the [Ph4P]+ salt of1 shows that the metals in the anion adopt a capped octahedral geometry, with all twenty carbonyl ligands in terminal sites. The metal core geometry in2a is best described as a tricapped octahedron, and is based on the structure of the dianion1 with two adjacent octahedral faces capped by the Au atoms of the two AuPEt3 groups. In a similar fashion, the geometry of3 is related to that of1 with the addition of an Os(C6H6) unit capped to a triangular face, to give a bicapped octahedral framework.  相似文献   

16.
The trinuclear osmium carbonyl cluster, [Os3(CO)10(MeCN)2], is allowed to react with 1 equiv. of [IrCp1Cl2]2 (Cp1 = pentamethylcyclopentadiene) in refluxing dichloromethane to give two new osmium–iridium mixed-metal clusters, [Os3Ir2(Cp1)2(μ-OH)(μ-CO)2(CO)8Cl] (1) and [Os3IrCp1(μ-OH)(CO)10Cl] (2), in moderate yields. In the presence of a pyridyl ligand, [C5H3N(NH2)Br], however, the products isolated are different. Two osmium–iridium clusters with different coordination modes of the pyridyl ligand are afforded, [Os3IrCp1(μ-H)(μ-Cl)(η33-C5H2N(NH2)Br)(CO)9] (3) and [Os3IrCp1(μ-Cl)223-C5H3N(NH)Br)(CO)7] (4). All of the new compounds are characterized by conventional spectroscopic methods, and their structures are determined by single-crystal X-ray diffraction analysis.  相似文献   

17.
The reactions of the heterometallic complexes (-H)Os3(-O2CC5H4FeCp)(CO)10 (1) and Fe{(-O2CC5H4)(-H)Os3(CO)10}2 (2) with CF3COOH, CF3SO3H, and AcCl were studied. The reaction of 1 with CF3COOH involves interaction with the Cp ligands, protonation of the O atom of the bridging carboxylate group, and oxidative degradation of the complex. At low concentrations, CF3SO3H protonates the O atom of the bridging carboxylate group, while at high concentrations, degradation of the complex takes place. The reaction of complex 2with either CF3COOH or low concentrations of CF3SO3H results in successive elimination of two [(-H)Os3(CO)10] cluster fragments due to protonation of the O atoms of the carboxylate groups. In the case of high CF3SO3H concentrations, the Os—Os bonds of both cluster fragments of 2 are also protonated to give the [Fe{(-O2CC5H4)(-H)2Os3(CO)10}2]2+ dication. The Friedel—Crafts acylation of 1 takes place only when a large excess of AcCl and AlCl3 is used to give two new complexes, (-H)Os3(-O2CC5H4FeC5H4C(O)CH3)(CO)10 and (-H)Os3(-O2CC5H3C(O)CH3FeCp)(CO)10 in a 2 : 1 ratio.  相似文献   

18.
Treatment of the electronically unsaturated 4-methylquinoline triosmium cluster $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu_3\hbox{-}\upeta^{2}\hbox{-}\hbox{C}_{9}\hbox{H}_{5} \hbox{(4-Me)N})(\upmu\hbox{-H})]$ (1) with tetramethylthiourea in refluxing cyclohexane at 81°C gave $[\hbox{Os}_{3}\hbox{(CO)}_{8}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5} \hbox{(4-Me)N})(\upeta^2\hbox{-SC}(\hbox{NMe}_2\hbox{NCH}_2\hbox{Me})(\upmu \hbox{-H})_2]$ (2) and $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5}\hbox{(4-Me)N})(\upeta^1\hbox{-SC}(\hbox{NMe}_2)_2)(\upmu\hbox{-H})]$ (3). In contrast, a similar reaction of the corresponding quinoline compound $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu_{3}\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N})(\upmu\hbox{-H})]$ (4) with tetramethylthiourea afforded $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N})(\upeta^{1}\hbox{-SC(NMe}_{2})_{2})(\upmu\hbox{-H)}]$ (5) as the only product. Compound 2 contains a cyclometallated tetramethylthiourea ligand which is chelating at the rear osmium atom and a quinolyl ligand coordinated to the Os3 triangle via the nitrogen lone pair and the C(8) atom of the carbocyclic ring. In 3 and 5, the tetramethylthiourea ligand is coordinated at an equatorial site of the osmium atom, which is also bound to the carbon atom of the quinolyl ligand. Compounds 3 and 5 react with PPh3 at room temperature to give the previously reported phosphine substituted products $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu \hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5}\hbox{(4-Me)N)(PPh}_{3})(\upmu\hbox{-H)}]$ (6) and $[\hbox{Os}_{3}\hbox{(CO}_{9}(\upmu \hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N)(PPh}_{3})(\upmu\hbox{-H)}]$ (7) by the displacement of the tetramethylthiourea ligand.  相似文献   

19.
毛江高  金钟声 《结构化学》1994,13(5):329-333
CrystalStructureof[La(NCS)_3(18-crown-6)(DMF)]MaoJiang-Gao(FujianInstituteofResearchontheStructureofMatter,AcademiaSinica,Fuzh?..  相似文献   

20.
The reaction of [Os3(CO)10(μ-dppm)] (1) with tBu2PH in refluxing diglyme results in the electron-deficient metal cluster complex [Os3(CO)5(μ3-H)(μ-PtBu2)2(μ-dppm)] (2) (dppm = Ph2PCH2PPh2) in good yields. The molecular structure of 2 has been established by a single crystal X-ray structure analysis. In contrast to the known homologue [Ru3(μ-CO)(CO)4(μ3-H)(μ-H)(μ-PtBu2)2(μ-dppm)] (3), no bridging carbonyl ligand was found in 2. The electronically unsaturated cluster 2 does not react with carbon monoxide under elevated pressure, therefore 2 seems to be coordinatively saturated by reason of the high steric demands of the phosphido ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号