首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two compounds of a new type, [Mo(2)](CH(3)O)(2)M(CH(3)O)(2)[Mo(2)] where [Mo(2)] is an abbreviation for Mo(2)[(p-MeOC(6)H(4))NCHN(p-MeOC(6)H(4))](3) and M = Zn (1) and Co (2), are reported. Discrete [M(OR)(4)](2-) ions, either as such or in the mu(2),eta(4) role, have not heretofore been described. In these compounds they have distorted tetrahedral structures and bridge two [Mo(2)] groups in much the same way as did SO(4)(2-), MoO(4)(2-), and WO(4)(2-) ions in other recently reported compounds (Cotton, F. A.; Donahue, J. P.; Murillo, C. A. Inorg. Chem. 2001, 40, 2229). The (1)H NMR spectrum of 1 and the visible spectrum and magnetic properties of 2 are consistent with these structures. The M(OCH(3))(4) bridges are moderately effective in coupling the two [Mo(2)] redox centers. Compounds 1 and 2 may also be viewed as having Zn(II) and Co(II) centers tetrahedrally coordinated by the bidentate ligand [Mo(2)[(p-MeOC(6)H(4))NCHN(p-MeOC(6)H(4))](3)(OMe)(2)](-). From that point of view they may be compared with Zn(DPM)(2) and Co(DPM)(2) (3), where DPM is the anion of dipivaloylmethane. For purposes of comparison, 3 has been fully characterized structurally, spectroscopically, and magnetically. Close analogies between 2 and 3 are shown to exist.  相似文献   

2.
A new and more basic ligand has been used to make two new tricobalt extended metal atom chains (EMACs), namely, Co(3)(depa)(4)Cl(2), 3, and Co(3)(depa)(4)(CN)(2), 4. The depa ligand is di(4-ethyl-2-pyridyl)amide, a useful modification of the well-known di(2-pyridyl)amide, dpa, ligand. The new compounds have been thoroughly characterized, and informative comparisons are made of 3 with Co(3)(dpa)(4)Cl(2), 1, and 4 with Co(3)(dpa)(4)(CN)(2), 2, which were described several years ago. Introduction of the eight ethyl groups into the trimetal compounds improves solubility, makes oxidations easier, and allows for a more complete examination of the magnetic susceptibility as a function of temperature for 3 than was possible for 1. The data clearly indicate that the upper state for 3 has S = (3)/(2) and suggest that this is the case for 1 as well.  相似文献   

3.
The self-assembly of Co(O(2)CPh)(2) with a 2,3-dihydroxyquinoxaline (H(2)dhq) linker has revealed a new two-dimensional cluster-based compound, [Co(4)(OMe)(2)(O(2)CPh)(2)(dhq)(2)(MeOH)(2)](n), which shows spin-canted magnetization and a definite magnetic hysteresis loop.  相似文献   

4.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

5.
A hydrothermal reaction of cobalt nitrate, 4,4'-oxybis(benzoic acid) (OBA), 1,2,4-triazole, and NaOH gave rise to a deep purple colored compound [Co(4)(triazolate)(2)(OBA)(3)], I, possessing Co(4) clusters. The Co(4) clusters are connected together through the tirazolate moieties forming a two-dimensional layer that closely resembles the TiS(2) layer. The layers are pillared by the OBA units forming the three-dimensional structure. To the best of our knowledge, this is the first observation of a pillared TiS(2) layer in a metal-organic framework compound. Magnetic studies in the temperature range 1.8-300 K indicate strong antiferromagetic interactions for Co(4) clusters. The structure as well as the magnetic behavior of the present compound has been compared with the previously reported related compound [Co(2)(μ(3)-OH)(μ(2)-H(2)O)(pyrazine)(OBA)(OBAH)] prepared using pyrazine as the linker between the Co(4) clusters.  相似文献   

6.
The synthesis, crystal structure, magnetic properties, and single-molecule conductance of two new trinuclear metal string complexes, [Ni(3)(dzp)(4)(NCS)(2)] (2) and [Co(3)(dzp)(4)(NCS)(2)] (3), containing the rigid Hdzp ligand (1, 1,9-diazaphenoxazine) are reported. X-ray structural analyses show that compounds 2 and 3 exhibit smaller torsion angles and longer metal-metal distances than those exhibited by the corresponding dpa(-) analogues (dpa(-) = dipyridylamido anion) due to the rigidity of Hdzp ligands. The longer metal-metal distance observed for 2 and 3 results in variations in their magnetic properties. The exchange interaction (J = -160 cm(-1)) between two high spin (HS) Ni(II) ions in 2 decreases slightly in comparison with those of trinickel dpa(-) analogues. The doublet-quartet gap of 3 is smaller than that of [Co(3)(dpa)(4)(NCS)(2)] (4), which causes compound 3 to show spin-crossover behavior even at low temperature.  相似文献   

7.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

8.
[Co3(HCOO)6](CH3OH)(H2O) (1), the isostructural analogue of the porous magnet of coordination framework [Mn3(HCOO)6](CH3OH)(H2O), and its desolvated form [Co3(HCOO)6] (2) were prepared and characterized by X-ray and neutron diffraction methods, IR, thermal analyses, and BET, and their magnetic properties were measured. The parent compound, 1, crystallizes in the monoclinic system, space group P21/c, a = 11.254(2) A, b = 9.832(1) A, c = 18.108(3) A, beta = 127.222(2) degrees , V = 1595.5(4) A3, Z = 4, R1 = 0.0329 at 180 K. It possesses a unit cell volume that is 9% smaller than [Mn3(HCOO)6](CH3OH)(H2O) due to the smaller radius of Co2+ ion. Compared with the parent compound 1, the desolvated compound 2 has slightly larger lattice with cell parameters of a = 11.2858(4) A, b = 9.8690(4) A, c = 18.1797(6) A, beta = 127.193(2) degrees , V = 1613.0(1) A3, R1 = 0.0356 at 180 K. The cell parameters of 2, obtained from neutron powder data at 2 K, are a = 11.309(2) A, b = 9.869(1) A, c = 18.201(3) A, beta = 127.244(8) degrees , V = 1617.3(5) A3. The pore volume reduces from 33% to 30% by replacing Mn by Co. The material exhibits a diamond framework based on Co-centered CoCo4 tetrahedral nodes, in which all metal ions have octahedral coordination geometry and all HCOO groups link the metal ions in syn-syn/anti modes. It displays thermal stability up to 270 degrees C. The compound easily loses guest molecules without loss of crystallinity, and it partly reabsorbs water from the atmosphere. Significant N2 sorption was observed for the desolvated framework suggesting that the material possesses permanent porosity. The magnetic properties show a tendency to a 3D long-range magnetic ordering, probably antiferromagnetic with a spin canting arrangement below 2 K.  相似文献   

9.
Bao SS  Zheng LM  Liu YJ  Xu W  Feng S 《Inorganic chemistry》2003,42(17):5037-5039
This paper reports the synthesis and crystal structure of a cobalt aminomethylenediphosphonate compound NaCo(2)[NH(3)CH(PO(3))(PO(3)H(0.5))](2)(H(2)O)(2).xH(2)O (1). It shows a novel open framework structure in which layers of Co(2)[NH(3)CH(PO(3))(PO(3)H(0.5))](2)(H(2)O)(2) are connected by NaO(6) linkages. The magnetic studies show a dominant antiferromagnetic exchange between the Co(II) ions.  相似文献   

10.
Nitrile hydratases (NHases) are thiolate-ligated Fe(III)- or Co(III)-containing enzymes, which convert nitriles to the corresponding amide under mild conditions. Proposed NHase mechanisms involve M(III)-NCR, M(III)-OH, M(III)-iminol, and M(III)-amide intermediates. There have been no reported crystallographically characterized examples of these key intermediates. Spectroscopic and kinetic data support the involvement of a M(III)-NCR intermediate. A H-bonding network facilitates this enzymatic reaction. Herein we describe two biomimetic Co(III)-NHase analogues that hydrate MeCN, and four crystallographically characterized NHase intermediate analogues, [Co(III)(S(Me2)N(4)(tren))(MeCN)](2+) (1), [Co(III)(S(Me2)N(4)(tren))(OH)](+) (3), [Co(III)(S(Me2)N(4)(tren))(NHC(O)CH(3))](+) (2), and [Co(III)(O(Me2)N(4)(tren))(NHC(OH)CH(3))](2+) (5). Iminol-bound 5 represents the first example of a Co(III)-iminol compound in any ligand environment. Kinetic parameters (k(1)(298 K) = 2.98(5) M(-1) s(-1), ΔH(?) = 12.65(3) kcal/mol, ΔS(?) = -14(7) e.u.) for nitrile hydration by 1 are reported, and the activation energy E(a) = 13.2 kcal/mol is compared with that (E(a) = 5.5 kcal/mol) of the NHase enzyme. A mechanism involving initial exchange of the bound MeCN for OH- is ruled out by the fact that nitrile exchange from 1 (k(ex)(300 K) = 7.3(1) × 10(-3) s(-1)) is 2 orders of magnitude slower than nitrile hydration, and that hydroxide bound 3 does not promote nitrile hydration. Reactivity of an analogue that incorporates an alkoxide as a mimic of the highly conserved NHase serine residue shows that this moiety facilitates nitrile hydration under milder conditions. Hydrogen-bonding to the alkoxide stabilizes a Co(III)-iminol intermediate. Comparison of the thiolate versus alkoxide intermediate structures shows that C≡N bond activation and C═O bond formation proceed further along the reaction coordinate when a thiolate is incorporated into the coordination sphere.  相似文献   

11.
This paper describes in detail four new compounds that contain extended metal atom chains (EMACs) of three nickel atoms wrapped by either di(2-pyridyl)amide (dpa) or the new homologous ligand with an ethyl group at the para position of each pyridyl group, depa, and compares them to the precursor Ni(3)(dpa)(4)Cl(2) (1) and the oxidized and rather unstable Ni(3)(dpa)(4)(PF(6))(3) (2). The new molecules are Ni(3)(depa)(4)Cl(2) (3), Ni(3)(depa)(4)(PF(6))(3) (4), [Ni(3)(dpa)(4)(CH(3)CN)(2)](PF(6))(2) (5), and [Ni(3)(depa)(4)(CH(3)CN)(2)](PF(6))(2) (6). These compounds are fully described as to preparation, elemental composition, structure, infrared spectra, (1)H NMR spectra (where possible), electrochemistry, magnetic susceptibility, and an EPR spectrum for 4. The effects of (a) introducing the ethyl substituents on the ligands, (b) replacing axial anions by neutral axial ligands, and (c) oxidizing the Ni(3) chains are reported and discussed. The point of major interest is how oxidation profoundly alters the electronic structure of the EMAC.  相似文献   

12.
The synthesis and characterisation of a pyridazine-containing two-armed grid ligand L2 (prepared from one equivalent of 3,6-diformylpyridazine and two equivalents of p-anisidine) and the resulting transition metal (Zn, Cu, Ni, Co, Fe, Mn) complexes (1-9) are reported. Single-crystal X-ray structure determinations revealed that the copper(I) complex had self-assembled as a [2 x 2] grid, [Cu(I) (4)(L2)(4)][PF(6)](4).(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25) (2.(CH(3)CN)(H(2)O)(CH(3)CH(2)OCH(2)CH(3))(0.25)), whereas the [Zn(2)(L2)(2)(CH(3)CN)(2)(H(2)O)(2)][ClO(4)](4).CH(3)CN (1.CH(3)CN), [Ni(II) (2)(L2)(2)(CH(3)CN)(4)][BF(4)](4).(CH(3)CH(2)OCH(2)CH(3))(0.25) (5 a.(CH(3)CH(2)OCH(2)CH(3))(0.25)) and [Co(II) (2)(L2)(2)(H(2)O)(2)(CH(3)CN)(2)][ClO(4)](4).(H(2)O)(CH(3)CN)(0.5) (6 a.(H(2)O)(CH(3)CN)(0.5)) complexes adopt a side-by-side architecture; iron(II) forms a monometallic cation binding three L2 ligands, [Fe(II)(L2)(3)][Fe(III)Cl(3)OCl(3)Fe(III)].CH(3)CN (7.CH(3)CN). A more soluble salt of the cation of 7, the diamagnetic complex [Fe(II)(L2)(3)][BF(4)](2).2 H(2)O (8), was prepared, as well as two derivatives of 2, [Cu(I) (2)(L2)(2)(NCS)(2)].H(2)O (3) and [Cu(I) (2)(L2)(NCS)(2)] (4). The manganese complex, [Mn(II) (2)(L2)(2)Cl(4)].3 H(2)O (9), was not structurally characterised, but is proposed to adopt a side-by-side architecture. Variable temperature magnetic susceptibility studies yielded small negative J values for the side-by-side complexes: J=-21.6 cm(-1) and g=2.17 for S=1 dinickel(II) complex [Ni(II) (2)(L2)(2)(H(2)O)(4)][BF(4)](4) (5 b) (fraction monomer 0.02); J=-7.6 cm(-1) and g=2.44 for S= 3/2 dicobalt(II) complex [Co(II) (2)(L2)(2)(H(2)O)(4)][ClO(4)](4) (6 b) (fraction monomer 0.02); J=-3.2 cm(-1) and g=1.95 for S= 5/2 dimanganese(II) complex 9 (fraction monomer 0.02). The double salt, mixed valent iron complex 7.H(2)O gave J=-75 cm(-1) and g=1.81 for the S= 5/2 diiron(III) anion (fraction monomer=0.025). These parameters are lower than normal for Fe(III)OFe(III) species because of fitting of superimposed monomer and dimer susceptibilities arising from trace impurities. The iron(II) centre in 7.H(2)O is low spin and hence diamagnetic, a fact confirmed by the preparation and characterisation of the simple diamagnetic iron(II) complex 8. M?ssbauer measurements at 77 K confirmed that there are two iron sites in 7.H(2)O, a low-spin iron(II) site and a high-spin diiron(III) site. A full electrochemical investigation was undertaken for complexes 1, 2, 5 b, 6 b and 8 and this showed that multiple redox processes are a feature of all of them.  相似文献   

13.
A novel colorimetric sensor based on 8-hydroxy quinoline-5-azo-4'-nitrobenzene (1) was prepared and used for recognizing anions. 1 and its metal complex (1.Co) were found to show response to anions such as CH(3)CO(2)(-), H(2)PO(4)(-), HSO(4)(-), F(-) and dramatic color changes were observed. The selectivity and sensitivity of 1 and 1.Co for sensing anions were different, which was in the order of CH(3)CO(2)(-)>F(-)>H(2)PO(4)(-)>HSO(4)(-) for 1 and H(2)PO(4)(-)>HSO(4)(-)>CH(3)CO(2)(-) approximately F(-) for 1.Co, respectively. In CH(3)CN, sensor 1.Co exhibited excellent specificity toward H(2)PO(4)(-), and the color variety was dependent on the concentration of H(2)PO(4)(-) which was attributed to anion structure and stability of anionic complex (1-anion), metal complex (1-Co) and inorganic complex (Co-anion).  相似文献   

14.
The three novel heterometallic complexes [CuCo(III)Co(II)(2)(MeDea)(3)Cl(3)(CH(3)OH)(0.55)(H(2)O)(0.45)](H(2)O)(0.45) (1), [CuCo(III)Zn(2)(MeDea)(3)Cl(3)(CH(3)OH)(0.74)(H(2)O)(0.26)](H(2)O)(0.26) (2), and [CuCo(III)Zn(2)(MeDea)(3)Cl(3)(DMF)] (3) have been prepared using a one-pot reaction of copper powder with cobalt chloride (1) and zinc nitrate (2, 3) in a methanol (1, 2) or dimethylformamide (3) solution of N-methyldiethanolamine. A search of the Cambridge Structural Database shows that the tetranuclear asymmetric cores M(4)(μ(3)-X)(μ-X)(5) of 1-3 represent an extremely rare case of M(4)X(6) arrays. The magnetic investigations of 1 disclose antiferromagnetic coupling in a Co(II)-Cu(II)-Co(II) exchange fragment with J(Co-Cu)/hc = -4.76 cm(-1), J(Co-Co)/hc = -2.76 cm(-1), and D(Co)/hc = +34.3 cm(-1). Compounds 1-3 act as precursors for the mild peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone with overall yields up to 23%. The synthetic and structural features as well as the thermogravimetric behavior and electrospray ionization mass spectrometry data are discussed.  相似文献   

15.
The magnetic exchange interactions in a C0(3)(11) moiety encapsulated in Na(17) [(NaOH(2))Co(3)(H(2)O)(P(2)W(15)O(56))(2)] (NaCo(3)) were studied by a combination of magnetic measurements (magnetic susceptibility and low-temperature magnetization), with a detailed Inelastic Neutron Scattering (INS) investigation. The novel structure of the salt was determined by X-ray crystallography. The ferromagnetic Co(3)O(14) triangular cluster core consists of three octahedrally oxo-coordinated Co(II) ions sharing edges. According to the single-ion anisotropy and spin-orbit coupling usually assumed for octahedral Co(II) ions, the appropiate exchange Hamiltonian to describe the ground-state properties of the isosceles triangular Co(3) spin cluster is anisotropic and is expressed as H = - 2sigma(alpha)(=)(x,y,z)(J(alpha)(12)S(1alpha)S(2alpha) + J(alpha)(23)S(2alpha)S(3alpha) + J(alpha)(13)S(1alpha)S(3alpha)), where J(alpha) are the components of the exchange interactions between the Co(II) ions. To reproduce the INS data, nonparallel anisotropic exchange tensors needed to be introduced, which were directly connected to the molecular symmetry of the complex. The following range of parameters (value +/- 0.5 cm(-1)) was found to reproduce all experimental information while taking magnetostructural relations into account: J(x)(12) = J(y)(13) = 8.6 cm(-1); J(y)(12) = J(x)(13) = 1.4 cm(-1); J(z)(12) = J(z)(13) = 10.0 cm(-1); J(x)(23) = J(y)(23) = 6.5 cm(-1) and = 3.4 cm(-1).  相似文献   

16.
Wang YQ  Zhang XM  Li XB  Wang BW  Gao EQ 《Inorganic chemistry》2011,50(13):6314-6322
Two coordination polymers formulated as [{[Co(2)(L)(N(3))(4)]·2DMF}(n) (1) and [Mn(2)(L)(H(2)O)(0.5)(N(3))(8)](n) (2) (L = 1,4-bis(4-carboxylatopyridinium-1-methyl)benzene) were synthesized and structurally and magnetically characterized. In compound 1, the anionic uniform Co(II) chains with mixed (μ-EO-N(3))(2)(μ-COO) triple bridges (EO = end-on) are cross-linked by the cationic bis(pyridinium) spacers to generate 2D coordination layers. It was demonstrated that the triple bridges mediate ferromagnetic coupling and that the compound represents a new example of the rare systems exhibiting the coexistence of antiferromagnetic ordering, metamagnetism, and slow magnetic dynamics. Compound 2 features the magnetic Δ-chain formed from isosceles triangular units with single μ-EE-N(3) and double (μ-EO-N(3))(μ-COO) bridges (EE = end-to-end). The Δ-chains are interlinked by long organic ligands into a 3D framework with novel net topology and 3-fold interpenetration. The magnetic properties of 2 indicate the presence of spin frustration characteristic of Δ-chains with antiferromagnetic interactions.  相似文献   

17.
Reaction of Co(NCS)(2) with pyridine (pyr) in aqueous solution at room temperature leads to the formation of the pyridine-rich 1:4 compound of composition [Co(NCS)(2)(pyridine)(4)] (1) reported recently. On heating, the pyridine-rich 1:4 compound transforms into its corresponding pyridine-deficient 1:2 compound of composition [Co(NCS)(2)(pyridine)(2)](n) (2), which decomposes on further heating. In the crystal structure of compound 2 the metal cations are coordinated by four N-atoms of two pyridine ligands and two N-bonded thiocyanato anions, each in mutually trans orientation, and by two S-atoms of two adjacent thiocyanato anions in a slightly distorted octahedral geometry. The thiocyanato anions bridge the metal cations forming one-dimensional polymeric chains. IR spectroscopic investigations on the pyridine-deficient 1:2 compound prepared in thermal decomposition are in accordance with bridging thiocyanato anions. Magnetic measurements of the pyridine-rich 1:4 compound and pyridine-deficient 1:2 compound reveal different behaviour with Curie-Weiss paramagnetism for compound 1 and single chain magnetic behaviour for compound 2, with a Mydosh-parameter φ = 0.12 and an effective energy barrier (-U(eff)/k(B)) of 62.5 K for the spin relaxation.  相似文献   

18.
The FT IR and FT Raman spectra of Co(en)3Al3P4O16.3H2O (compound I) and [NH4]3[Co(NH3)6]3[Al2 (PO4)4]2.2H2O (compound II) are recorded and analysed based on the vibrations of Co(en)(3)3+, Co(NH3)(6)3+, NH4, Al-O-P, PO3, PO2 and H2O. The observed splitting of bands indicate that the site symmetry and correlation field effects are appreciable in both the compounds. In compound I, the overtone of CH2 deformation Fermi resonates with its symmetric stretching vibration. The NH4 ion in compound II is not free to rotate in the crystalline lattice. Hydrogen bonding of different groups is also discussed.  相似文献   

19.
The use of a moderately hydrophobic ionic liquid, 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([BdMIM][BF(4)]), as a cosolvent with water, has been investigated in the synthesis of metal phosphonates. This hydro-ionothermal synthesis has been carried out through a systematic combinatorial investigation of several divalent metal chlorides and two related ligands, iminobis(methylphosphonic acid) and N-methyliminiobis(methylphosphonic acid). These reactions resulted in five new divalent metal phosphonates. We present here the synthetic techniques utilized as well as the X-ray structures and characteristic properties of each of these compounds. Co(HO(3)PCH(2)NH(2)CH(2)PO(3)H)(2), (1), consists of sheets that are hydrogen bonded together by pairs of P-O···H groups. Co(H(2)O)(2)(HO(3)PCH(2)NH(2)CH(2)PO(3)H)(2), (2), consists of chains that are connected through an extensive network of hydrogen bonds. Co(HO(3)PCH(2)NH(CH(3))CH(2)PO(3)H)(2), (3), is made up of sheets that are hydrogen bonded together by pairing P-O···H interactions. Zn(3)(O(3)PCH(2)NH(2)CH(2)PO(3))(2), (4), is isostructural to a previously reported cobalt compound which is a non-porous 3-dimensional network. CuClPO(3)CH(2)NH(2)CH(3), (5), formed as a result of an in situ N-C bond cleavage. Ladders built of Cu-O-P-O 8-membered rings are crosslinked by bridging chloride atoms to form sheets. 1, 3, 4 and 5 have been synthesized using the hydrophobic ionic liquid 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([BdMIM][BF(4)]) with water as a cosolvent, while 2 has been synthesized from identical conditions in the absence of the [BdMIM][BF(4)]. We also report the microwave assisted hydro-ionothermal synthesis of the known polymorph of 2, Co(H(2)O)(2)(HO(3)PCH(2)NH(2)CH(2)PO(3)H)(2), (6), synthesized in two hours providing high quality crystals in good yield. The compounds have been characterized by thermogravimetric analysis and IR spectroscopy, and their magnetic properties have been investigated.  相似文献   

20.
Three new homo- and heterometallic hexanuclear complexes [Mn(2)M(II)(4)O(2)(PhCOO)(10)(DMF)(4)] (with M = Mn (1), Co (2) or Ni (3) and DMF = dimethylformamide) have been synthesized by redox generation of benzoate ligands from benzaldehyde in a one-pot reaction. All of the compounds are isostructural and crystallize in the I-42d space group of the tetragonal system, data for 1: a = 27.2249(8) Angstroms, c = 25.5182(5) Angstroms, R1 = 0.0681. The crystal structure contains isolated molecules. Each molecule consists of 2 x Mn(III) surrounded by four M(II) ions to form two edge-sharing OMn(2)M(2) tetrahedra giving rise to the [Mn(2)M(4)O(2)] core. The coordination sphere of each metal is completed by the bridging benzoate ligands and DMF molecules. The magnetic susceptibilities of 1-3 have been measured in the 1.8 K < T < 300 K temperature range. The magnetic susceptibilities for 1 and 2 pass through a broad maximum at low temperature which is characteristic of the diamagnetic ground state, while for 3 no maximum is detected down to 1.8 K. The magnetic data have been interpreted quantitatively for 1 and 3 on the basis of spin exchange interactions between the metallic centers (spin Hamiltonian for a pair being H(AB) = -J(AB) S(A).S(B)). Single-crystal measurements on [Mn(6)O(2)(PhCOO)(10)(CH(3)CN)(4)] (4) show that significant magnetic anisotropy develops at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号