首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1.IntroductionLetG=(V,E,W)beaconnected,weightedandundirectedgraph,VeEE,w(e)(相似文献   

2.
In this paper, sequential and parallel algorithms are presented to find a maximum independent set with largest weight in a weighted permutation graph. The sequential algorithm, which is designed based on dynamic programming, runs in timeO(nlogn) and requiresO(n) space. The parallel algorithm runs inO(log2 n) time usingO(n 3/logn) processors on the CREW PRAM, orO(logn) time usingO(n 3) processors on the CRCW PRAM.  相似文献   

3.
A new data structure called ordered priority queue is introduced in this paper. Elements stored in the data structure have a primary order (key) and a secondary order (priority) associated with them. An ordered min-priority queue allows users to find the minimum priority element in any range (according to key order) inO(logn) time. Such a data structure withn elements can be created inO(n logn) time usingO(n) storage. A specific implementation based on median split trees is presented. Sequential access of the elements can be done inO(n log logn) time andO(logn) extra storage.This work was supported in part by NASA under grant NAG 5-739.  相似文献   

4.
In this paper, parallel algorithms are presented for solving some problems on permutation graphs. The coloring problem is solved inO(log2 n) time usingO(n 3/logn) processors on the CREW PRAM, orO(logn) time usingO(n 3) processors on the CRCW PRAM. The weighted clique problem, the weighted independent set problem, the cliques cover problem, and the maximal layers problem are all solved with the same complexities. We can also show that the longest common subsequence problem belongs to the class NC.  相似文献   

5.
In physical VLSI design, network design (wiring) is the most time-consuming phase. For solving global wiring problems, we propose to first compute from the layout geometry a graph that preserves all shortest paths between pairs of relevant points, and then to operate on that graph for computing shortest paths, Steiner minimal tree approximations, or the like. For a set of points and a set of simple orthogonal polygons as obstacles in the plane, withn input points (polygon corner or other) altogether, we show how a shortest paths preserving graph of sizeO(n logn) can be computed in timeO(n logn) in the worst case, with spaceO(n). We illustrate the merits of this approach with a simple example: If the length of a longest edge in the graph is bounded by a polynomial inn, an assumption that is clearly fulfilled for graphs derived from VLSI layout geometries, then a shortest path can be computed in timeO(n logn log logn) in the worst case; this result improves on the known best one ofO(n(logn)3/2).  相似文献   

6.
A parallel algorithm for depth-first searching of a directed acyclic graph (DAG) on a shared memory model of a SIMD computer is proposed. The algorithm uses two parallel tree traversal algorithms, one for the preorder traversal and the other for therpostorder traversal of an ordered tree. Each of these traversal algorithms has a time complexity ofO(logn) whenO(n) processors are used,n being the number of vertices in the tree. The parallel depth-first search algorithm for a directed acyclic graphG withn vertices has a time complexity ofO((logn)2) whenO(n 2.81/logn) processors are used.  相似文献   

7.
Recently, Fredman and Tarjan invented a new, especially efficient form of heap (priority queue). Their data structure, theFibonacci heap (or F-heap) supports arbitrary deletion inO(logn) amortized time and other heap operations inO(1) amortized time. In this paper we use F-heaps to obtain fast algorithms for finding minimum spanning trees in undirected and directed graphs. For an undirected graph containingn vertices andm edges, our minimum spanning tree algorithm runs inO(m logβ (m, n)) time, improved fromO((m, n)) time, whereβ(m, n)=min {i|log(i) nm/n}. Our minimum spanning tree algorithm for directed graphs runs inO(n logn + m) time, improved fromO(n log n +m log log log(m/n+2) n). Both algorithms can be extended to allow a degree constraint at one vertex. Research supported in part by National Science Foundation Grant MCS-8302648. Research supported in part by National Science Foundation Grant MCS-8303139. Research supported in part by National Science Foundation Grant MCS-8300984 and a United States Army Research Office Program Fellowship, DAAG29-83-GO020.  相似文献   

8.
In this paper, we present parallel quicksort algorithms running inO((n/p+logp) logn) expected time andO((n/p+logp+log logn) logn) deterministic time respectively, and both withO(n) space by usingp processors on EREW PRAM. Whenp=O(n/logn), the cost is optimal, in terms of the product of time and number of processors. These algorithms can be used to obtain parallel algorithms for constructing balanced binary search trees without using sorting algorithms. One of our quicksort algorithms leads to a parallel quickhull algorithm on EREW PRAM.The work of this author was partially supported by a fellowship from the College of Science, Old Dominion University, Norfolk, VA 23529, USA.  相似文献   

9.
Parallel algorithms for analyzing activity networks are proposed which include feasibility test, topological ordering of the events, and computing the earliest and latest start times for all activities and hence identification of the critical activities of the activity network. The first two algorithms haveO(logn) time complexity and the remaining one achievesO(logd log logn) time bound, whered is the diameter of the digraph representing the activity network withn nodes. All these algorithms work on a CRCW PRAM and requireO(n 3) processors.  相似文献   

10.
We establish an O(nlog2n) upper bound on the time for deterministic distributed broadcasting in multi-hop radio networks with unknown topology. This nearly matches the known lower bound of Ω(nlogn). The fastest previously known algorithm for this problem works in time O(n3/2). Using our broadcasting algorithm, we develop an O(n3/2log2n) algorithm for gossiping in the same network model.  相似文献   

11.
Ray Shooting Amidst Convex Polygons in 2D   总被引:1,自引:0,他引:1  
We consider the problem of ray shooting in a two-dimensional scene consisting ofmconvex polygons with a total ofnedges. We present a data structure that requiresO(mn log m) space and preprocessing time and that answers a ray shooting query inO(log2 m log2 n) time. If the polygons are pairwise disjoint, the space and preprocessing time can be improved toO((m2+n)log m) andO((m2+n log n)log m), respectively. Our algorithm also works for a collection of disjoint simple polygons. We also show that if we allow onlyO(n) space, a ray shooting query among a collection of disjoint simple polygons can be answered in timeO(m/[formula]1+ log2 n) time, for any >0.  相似文献   

12.
This paper presents fast parallel algorithms for the following graph theoretic problems: breadth-depth search of directed acyclic graphs; minimum-depth search of graphs; finding the minimum-weighted paths between all node-pairs of a weighted graph and the critical activities of an activity-on-edge network. The first algorithm hasO(logdlogn) time complexity withO(n 3) processors and the remaining algorithms achieveO(logd loglogn) time bound withO(n 2[n/loglogn]) processors, whered is the diameter of the graph or the directed acyclic graph (which also represents an activity-on-edge network) withn nodes. These algorithms work on an unbounded shared memory model of the single instruction stream, multiple data stream computer that allows both read and write conflicts.  相似文献   

13.
We give two optimal parallel algorithms for constructing the arrangement ofn lines in the plane. The first nethod is quite simple and runs inO(log2 n) time usingO(n 2) work, and the second method, which is more sophisticated, runs inO(logn) time usingO(n 2) work. This second result solves a well-known open problem in parallel computational geometry, and involves the use of a new algorithmic technique, the construction of an -pseudocutting. Our results immediately imply that the arrangement ofn hyperplanes in d inO(logn) time usingO(n d) work, for fixedd, can be optimally constructed. Our algorithms are for the CREW PRAM.This research was supported by the National Science Foundation under Grants CCR-8810568 and CCR-9003299, and by the NSF and DARPA under Grant CCR-8908092.  相似文献   

14.
Efficient parallel algorithms are presented, on the CREW PRAM model, for generating a succinct encoding of all pairs shortest path information in a directed planar graphG with real-valued edge costs but no negative cycles. We assume that a planar embedding ofG is given, together with a set ofq faces that cover all the vertices. Then our algorithm runs inO(log2 n) time and employsO(nq+M(q)) processors (whereM(t) is the number of processors required to multiply twot×t matrices inO(logt) time). Let us note here that wheneverq<n then our processor bound is better than the best previous one (M(n)).O(log2 n) time,n-processor algorithms are presented for various subproblems, including that of generating all pairs shortest path information in a directedouterplanar graph. Our work is based on the fundamental hammock-decomposition technique of G. Frederickson. We achieve this decomposition inO(logn log*n) parallel time by usingO(n) processors. The hammock-decomposition seems to be a fundamental operation that may help in improving efficiency of many parallel (and sequential) graph algorithms.This work was partially supported by the EEC ESPRIT Basic Research Action No. 3075 (ALCOM) and by the Ministry of Industry, Energy and Technology of Greece.  相似文献   

15.
On the construction of abstract voronoi diagrams   总被引:1,自引:0,他引:1  
We show that the abstract Voronoi diagram ofn sites in the plane can be constructed in timeO(n logn) by a randomized algorithm. This yields an alternative, but simpler,O(n logn) algorithm in many previously considered cases and the firstO(n logn) algorithm in some cases, e.g., disjoint convex sites with the Euclidean distance function. Abstract Voronoi diagrams are given by a family of bisecting curves and were recently introduced by Klein [13]. Our algorithm is based on Clarkson and Shor's randomized incremental construction technique [7]. This work was supported by the DFG, Me 620/6, and ESPRIT P3075 ALCOM. A preliminary version of this paper has been presented at STACS '90, Rouen, France.  相似文献   

16.
Visibility and intersection problems in plane geometry   总被引:1,自引:0,他引:1  
We develop new data structures for solving various visibility and intersection problems about a simple polygonP onn vertices. Among our results are a simpleO(n logn)-time algorithm for computing the illuminated subpolygon ofP from a luminous side, and anO(logn)-time algorithm for determining which side ofP is first hit by a bullet fired from a point in a certain direction. The latter method requires preprocessing onP which takes timeO(n logn) and spaceO(n). The two main tools in attacking these problems are geometric duality on the two-sided plane and fractional cascading.Bernard Chazelle wishes to acknowledge the National Science Foundation for supporting this research in part under Grant CCR-8700917. A preliminary version of this paper was presented at the First Annual ACM Symposium on Computational Geometry, June 1985.  相似文献   

17.
We revisit one of the most fundamental classes of data structure problems in computational geometry: range searching. Matoušek (Discrete Comput. Geom. 10:157–182, 1993) gave a partition tree method for d-dimensional simplex range searching achieving O(n) space and O(n 1−1/d ) query time. Although this method is generally believed to be optimal, it is complicated and requires O(n 1+ε ) preprocessing time for any fixed ε>0. An earlier method by Matoušek (Discrete Comput. Geom. 8:315–334, 1992) requires O(nlogn) preprocessing time but O(n 1−1/d log O(1) n) query time. We give a new method that achieves simultaneously O(nlogn) preprocessing time, O(n) space, and O(n 1−1/d ) query time with high probability. Our method has several advantages:
•  It is conceptually simpler than Matoušek’s O(n 1−1/d )-time method. Our partition trees satisfy many ideal properties (e.g., constant degree, optimal crossing number at almost all layers, and disjointness of the children’s cells at each node).  相似文献   

18.
We present a parallel algorithm for finding the convex hull of a sorted set of points in the plane. Our algorithm runs inO(logn/log logn) time usingO(n log logn/logn) processors in theCommon crcw pram computational model, which is shown to be time and cost optimal. The algorithm is based onn 1/3 divide-and-conquer and uses a simple pointer-based data structure.Part of this work was done when the last three authors were at the Department of Computer and Information Science, Linköping University. The research of the second author was supported by the Academy of Finland.  相似文献   

19.
A new algorithm for rearranging a heap is presented and analysed in the average case. The average case upper bound for deleting the maximum element of a random heap is improved, and is shown to be less than [logn]+0.299+M(n) comparisons, *) whereM(n) is between 0 and 1. It is also shown that a heap can be constructed using 1.650n+O(logn) comparisons with this algorithm, the best result for any algorithm which does not use any extra space. The expected time to sortn elements is argued to be less thann logn+0.670n+O(logn), while simulation result points at an average case ofn log n+0.4n which will make it the fastest in-place sorting algorithm. The same technique is used to show that the average number of comparisons when deleting the maximum element of a heap using Williams' algorithm for rearrangement is 2([logn]–1.299+L(n)) whereL(n) also is between 0 and 1, and the average cost for Floyd-Williams Heapsort is at least 2nlogn–3.27n, counting only comparisons. An analysis of the number of interchanges when deleting the maximum element of a random heap, which is the same for both algorithms, is also presented.  相似文献   

20.
We give a direct combinatorial O(n3logn) algorithm for minimizing the number of late jobs on a single machine when jobs have release times and preemptions are allowed. Our algorithm improves the earlier O(n5) and O(n4) dynamic programming algorithms for this problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号