首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of bromobenzene and chlorobenzene with methyl acrylate were carried out in N-methylpyrrolidone (NMP) over a conventional Pd/C catalyst under Heck coupling conditions indicating both heterogeneous and homogeneous character. Benzene and biphenyl are produced in addition to the Heck coupling product of methyl cinnamate. It is proposed that the formation of methyl cinnamate and biphenyl proceed homogeneously with dissolved palladium species, while the formation of benzene takes place heterogeneously on the surface of supported palladium particles or free colloidal particles formed during the reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The Forum Article critically summarizes investigations and discussions on the nature and role of potential active species in C-C coupling reactions of the Heck type using catalyst systems with "ligand-free" inorganic salts, simple inorganic complexes, and supported and nonsupported (colloidal) Pd particles. From a series of experiments and reports, it can be concluded that the "active species" is generated in situ in catalytic systems at higher temperature conditions (>100 degrees C). In all heterogeneous systems with solid Pd catalysts, Pd is dissolved from the solid catalyst surface under reaction conditions by a chemical reaction (complex formation and/or oxidative addition of the aryl halide), forming extremely active coordinatively unsaturated Pd species. Pd is partially or completely redeposited onto the support at the end of the reaction when the aryl halide is used up. The Pd dissolution-redeposition processes correlate with the reaction rate and are strongly influenced by the reaction conditions. Skilled preparation of the catalyst and careful adjustment of the reaction conditions allowed the development of highly active heterogeneous catalysts (Pd/C, Pd/metal oxide, and Pd/zeolite), converting aryl bromides and aryl chlorides in high yields and short reaction times. Reaction conditions have been developed allowing the conversion of bromobenzene with turnover numbers (TONs) of 10(7) and even of unreactive aryl chlorides (chlorobenzene and chlorotoluene) in high yields with simple "ligand-free" Pd catalyst systems like PdCl2 or Pd(OH)2 in the absence of any organic ligand. Simple coordinatively unsaturated anionic palladium halide (in particular, bromo) complexes [PdXn](m-) play a crucial role as precursor and active species in all ligand-free and heterogeneous catalyst systems and possibly in Heck reactions at all.  相似文献   

3.
The amination of 2-fluoronitrobenzene was Pd(0) catalyzed at 65 degrees C in DMF, and the effectiveness of the catalysis was ligand-dependent. Among the five catalyst systems investigated, Pd(PPh3)4 was the most effective catalyst. The control experiments revealed that Pd(OAc)2 or PPh3 was not responsible for the catalysis. 4-Fluoro-3-nitro-benzonitrile and 4-fluoro-3-nitro-benzaldehyde also underwent Stille coupling and Suzuki coupling in the presence of Pd(PPh3)4, and the reactions afforded the coupling products in 28-86% yields. The control experiments showed no sign of reaction in the absence of palladium. These results were in agreement with the oxidative addition/reductive elimination pathway, where the oxidative addition could conceivably proceed via the SNAr mechanism.  相似文献   

4.
Tetrakis(dimethylamino)ethylene (TDAE)/cat. PdCl(2)(PhCN)(2)-promoted reductive coupling of aryl bromides having either electron-donating or electron-withdrawing groups on their para- and/or meta-position proceeded smoothly to afford the corresponding biaryls in good to excellent yields. Notably, TDAE is such a mild reductant that easily reducible groups, such as carbonyl and nitro groups, are tolerate. A similar reductive coupling of ortho-substituted aryl bromides did not occur at all. The proper choice of palladium catalysts is essential for the reductive coupling; thus, PdCl(2)(PhCN)(2), PdCl(2)(MeCN)(2), Pd(hfacac)(2), Pd(2)(dba)(3), PdCl(2), and Pd(OAc)(2) were used successively for this reaction, but phosphine-ligated palladium catalysts such as Pd(PPh(3))(4), PdCl(2)(PPh(3))(2), and Pd(dppp) did not promote the reaction. The reductive coupling did not occur with nickel catalysts such as NiBr(2), NiCl(2)(bpy), and Ni(acac)(2). The TDAE/cat. palladium-promoted reductive coupling of aryl halides having electron-withdrawing groups took place more efficiently than that of aryl halides substituted with electron-donating groups. A plausible mechanism of TDAE/cat. palladium-promoted reaction is discussed.  相似文献   

5.
Based on DFT calculations, the catalytic mechanism of palladium(0) atom, commonly considered as the catalytic center for Sonogashira cross-coupling reactions, has been analyzed in this study. In the cross-coupling reaction of iodobenzene with phenylacetylene without co-catalysts and bases involved, mechanistically plausible catalytic cycles have been computationally identified. These catalytic cycles typically occur in three stages: 1) oxidative addition of an iodobenzene to the Pd(0) atom, 2) reaction of the product of oxidative addition with phenylacetylene to generate an intermediate with the Csp bound to palladium, and 3) reductive elimination to couple the phenyl group with the phenylethynyl group and to regenerate the Pd(0) atom. The calculations show that the first stage gives rise to a two-coordinate palladium (Ⅱ) intermediate (ArPdI). Starting from this intermediate, the second oxidative stage, in which the C–H bond of acetylene adds to Pd(Ⅱ) without co-catalyst involved, is called alkynylation instead of transmetalation and proceeds in two steps. Stage 3 of reductive elimination of diphenylacetylene is energetically favorable. The results demonstrate that stage 2 requires the highest activation energy in the whole catalysis cycle and is the most difficult to happen, where co-catalysts help to carry out Sonogashira coupling reaction smoothly.  相似文献   

6.
The catalytic activity of η2-(olefin)palladium(0)(iminophosphine) complexes in the Suzuki-Miyaura coupling is strongly dependent on the reaction conditions and on the nature of the ligands. The reaction is at the best carried out in aromatic solvents in the presence of K2CO3 at 90-110 °C. Higher reaction rates are obtained when the R substituent on the N-imino group is an aromatic group of low steric hindrance and the olefin is a moderate π-accepting ligand such as dimethyl fumarate. At temperatures lower than 90 °C, a self-catalyzed process leading to catalyst deactivation becomes predominant. Preliminary mechanistic investigations indicate that the oxidative addition of the aryl bromide to a Pd(0) species is the rate determining step in the catalytic cycle and that the olefin plays a key role in catalyst stabilization. Systems in situ prepared by mixing Pd(OAc)2 or Pd(dba)2 with 1 equiv of iminophosphine appear substantially less active than the preformed catalysts.  相似文献   

7.
The kinetics of the stereoselective semi-hydrogenation of 4-octyne in THF by the highly active catalyst [Pd{(m,m'-(CF(3))(2)C(6)H(3))-bian}(ma)] (2) (bian = bis(imino)acenaphthene; ma = maleic anhydride) has been investigated. The rate law under hydrogen-rich conditions is described by r = k[4-octyne](0.65)[Pd][H(2)], showing first order in palladium and dihydrogen and a broken order in substrate. Parahydrogen studies have shown that a pairwise transfer of hydrogen atoms occurs in the rate-limiting step. In agreement with recent theoretical results, the proposed mechanism consists of the consecutive steps: alkyne coordination, heterolytic dihydrogen activation (hydrogenolysis of one Pd-N bond), subsequent hydro-palladation of the alkyne, followed by addition of N-H to palladium, reductive coupling of vinyl and hydride and, finally, substitution of the product alkene by the alkyne substrate. Under hydrogen-limiting conditions, side reactions occur, that is, formation of catalytically inactive palladacycles by oxidative alkyne coupling. Furthermore, it has been shown that (Z)-oct-4-ene is the primary reaction product, from which the minor product (E)-oct-4-ene is formed by an H(2)-assisted, palladium-catalyzed isomerization reaction.  相似文献   

8.
[reaction: see text] Kinetics and process parameters of coupling and hydro-dehalogenation reactions of chloroaryls are studied in the presence of zinc, water, and catalytic Pd/C. Good yields are obtained for the coupling of chlorobenzene, 4-chlorotoluene, and 4-chloro-1,1,1-trifluorotoluene. It is shown that water is actually one of the reagents, reacting with zinc in the presence of palladium to give zinc oxide and hydrogen gas, which then regenerates the Pd0 catalyst for the coupling reaction.  相似文献   

9.
The synthesis and structure of palladium complexes of trisubstituted PTA derivatives, PTA(R3), are described. Water-soluble phosphine ligands 1,3,5-triaza-7-phosphaadmantane (PTA), tris(aminomethyl)phosphine trihydrobromide, tri(aminomethyl) phosphine, 3,7-dimethyl-1,5,7-triaza-3-phosphabicyclo[3,3,1]nonane (RO-PTA), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA), lithium 1,3,5-triaza-7-phosphaadamantane-6-carboxylate (PTA-CO?Li), 2,4,6-triphenyl-1,3,5-triaza-7-phosphatricyclo [3.3.1.1]decane, and 2,4,6-triphenyl-1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane were used as ligands for palladium catalyzed Suzuki reactions in aqueous media. RO-PTA in combination with palladium acetate or palladium chloride was the most active catalyst for Suzuki cross coupling of aryl bromides and phenylboronic acid at 80 °C in 1:1 water:acetonitrile. The activity of Pd(II) complexes of RO-PTA is comparable to PPh?(m-C?H?SO?Na) (TPPMS) and P(m-C?H?SO?Na)? (TPPTS) and less active than tri(4,6-dimethyl-3-sulfonatophenyl)phosphine trisodium salt (TXPTS). Activated, deactivated, and sterically hindered aryl bromides were examined, with yields ranging from 50% to 90% in 6 h with 5% palladium precatalyst loading. X-ray crystal structures of (RO-PTA)PdCl?, (PTA(R3))?PdCl? (R = Ph, p-tert-butylC?H?), and PTA(R3) (R = p-tert-butylC?H?) are reported.  相似文献   

10.
Reaction of [Pd(PPh(3))(4)] with 1,1-dichloro-2,3-diarylcyclopropenes gives complexes of the type cis-[PdCl(2)(PPh(3))(C(3)(Ar)(2))] (Ar = Ph 5, Mes 6). Reaction of [Pd(dba)(2)] with 1,1-dichloro-2,3-diarylcyclopropenes in benzene gave the corresponding binuclear palladium complexes trans-[PdCl(2)(C(3)(Ar)(2))](2) (Ar = Ph 7, p-(OMe)C(6)H(4)8, p-(F)C(6)H(4)9). Alternatively, when the reactions were performed in acetonitrile, the complexes trans-[PdCl(2)(NCMe)(C(3)(Ar)(2))] (Ar = Ph 10, p-(OMe)C(6)H(4)11 and p-(F)C(6)H(4)) 12) were isolated. Addition of phosphine ligands to the binuclear palladium complex 7 or acetonitrile adducts 11 and 12 gave complexes of the type cis-[PdCl(2)(PR(3))(C(3)(Ar)(2))] (Ar = Ph, R = Cy 13, Ar = p-(OMe)C(6)H(4), R = Ph 14, Ar = p-(F)C(6)H(4), R = Ph 15). Crystal structures of complexes 6·3.25CHCl(3), 10, 11·H(2)O and 12-15 are reported. DFT calculations of complexes 10-12 indicate the barrier to rotation about the carbene-palladium bond is very low, suggesting limited double bond character in these species. Complexes 5-9 were tested for catalytic activity in C-C coupling (Mizoroki-Heck, Suzuki-Miyaura and, for the first time, Stille reactions) and C-N coupling (Buchwald-Hartwig amination) showing excellent conversion with moderate to high selectivity.  相似文献   

11.
The Suzuki-Miyaura coupling of aryl chlorides and PhB(OH)(2) under biphasic conditions (DMSO/heptane) can be performed in almost quantitative yields over several cycles by means of polymeric Pd catalysts with soluble polyethylene glycol phase tags. Three sterically demanding and electron-rich phosphines 1-CH(2)Br,4-CH(2)P(1-Ad)(2)-C(6)H(4), and 2-PCy(2),2'-OH-biphenyl, and 2-PtBu(2),2'-OH-biphenyl were covalently bonded to 2000 Dalton MeOPEG-OH. The catalysts, which were formed in situ from Na(2)[PdCl(4)], the respective polymeric phosphine, KF/K(3)PO(4), and PhB(OH)(2), efficiently couple aryl chlorides at 80 degrees C at 0.5 mol % loading, resulting in a >90 % yield of the respective biphenyl derivatives. The use of polar phase tags allows the efficient recovery of palladium-phosphine catalysts by simple phase separation of the catalyst-containing DMSO solution and the product-containing n-heptane phase. The high activity (TOF) of the catalyst remains almost constant over more than five reaction cycles, which involve the catalytic reaction, separation of the product phase from the catalyst phase, and addition of new reactants to initiate the next cycle. The Buchwald type biphenyl phosphines form the most active Pd catalysts, which are 1.3-2.8 times more active than catalysts derived from diadamantyl-benzylphosphine, but appear to be less robust in the recycling experiments. There is no apparent leaching of the catalyst into the heptane solution (<0.05 %), as evidenced by spectrophotometric measurements, and contamination of the product with Pd is avoided.  相似文献   

12.
钯催化气相氧化羰基化合成碳酸二甲酯   总被引:5,自引:0,他引:5  
通过催化剂反应性能和反应前后XPS谱图对比,分析了负载型钯催化剂在甲醇气相氧化羰基化合成碳酸二甲酯过程中的失活原因,研究了HCl在维持催化剂活性及失活催化剂再生中的作用.结果表明,氯离子的流失是负载型钯碳催化剂失活的主要原因.由于氯离子的流失,对于PdCl2/AC催化剂,钯很容易从二价变为零价:对于PdCl2-CuCl2/AC催化剂,CuCl2发生变化,失去使钯保持二价氯化物状态的功能.在反应过程中补充HCl可以延长催化剂的寿命,也可以利用HCl对失活催化剂进行再生,但采用HCl不能从根本上解决催化剂失活的问题.  相似文献   

13.
《中国化学快报》2021,32(12):3980-3983
Combined theoretical and experimental studies have explained the mechanism of Pd-catalyzed δ-C(sp3)−H arylation of primary amines. Instead of the monomeric Pd mechanism, our research unveils that all steps including C–H activation, oxidative addition, and reductive elimination take place via the heterodimeric Pd–Ag intermediates and transition states. Experimentally, the active heterodimeric Pd–Ag species were detected by mass spectrometry, which further confirms the proposed heterodimeric mechanism. Insight gained through this study reveals the synergistic manner of palladium catalysis and silver(I) additives in native NH2-directed C‒H activation and C–C coupling reactions.  相似文献   

14.
Tian Q  Larock RC 《Organic letters》2000,2(21):3329-3332
In the presence of a palladium catalyst and NaOAc, aryl iodides react with 1-aryl-1-alkynes to afford 9-alkylidene-9H-fluorenes in good yields. This process appears to involve (1) oxidative addition of the aryl iodide to Pd(0), (2) alkyne insertion, (3) rearrangement of the resulting vinylic palladium intermediate to an arylpalladium species, and (4) aryl-aryl coupling with simultaneous regeneration of the Pd(0) catalyst.  相似文献   

15.
Catalyst deactivation is an unavoidable process that occurs in catalytic chemical reactions. Laser Induced Breakdown Spectroscopy (LIBS) is used here as a novel approach to investigate the activity of palladium supported with carbon catalyst (Pd/C) over the hydrogenation of cinnamic acid with tetralin. Their outputs for four catalyst samples are reported for different time intervals of 0, 5, 10, 15 min during the reaction. The results of LIBS analysis are compared to Inductively Coupled Plasma Mass Spectrometry (ICP-MS), which shows a good agreement. Experimental data specify that line intensities of palladium (Pd) are decreased significantly with an increment of the reaction time. Moreover, the Field Emission Scanning Electron Microscope with energy dispersive spectroscopy (FESEM-EDS) of catalysts samples show aggregation of palladium particles for some places in the catalyst surface. The changes of Pd content and sintering of Pd particles in the catalyst during the reaction play substantial roles in catalyst deactivation.  相似文献   

16.
The palladium-catalyzed cross-coupling of 3-iodopyridine, long-chain terminal dienes, and benzylic amines or tosylamides provides a novel route to key intermediates for the synthesis of the naturally occurring, biologically active pyridine alkaloids theonelladins C and D, niphatesine C, and xestamine D. This process involves (1) oxidative addition of the heterocyclic iodide to Pd(0), (2) carbopalladation of the least hindered carbon-carbon double bond of the diene, (3) palladium migration, and (4) pi-allylpalladium displacement by the nitrogen nucleophile with simultaneous regeneration of the Pd catalyst. Subsequent hydrogenation and deprotection affords good yields of the natural products. The Pd-catalyzed coupling of 3-iodopyridine and 2-methyl-11-dodecen-1-ol provides a convenient synthesis of a long-chain aldehyde by an analogous palladium migration process, which is easily converted to the pyridine alkaloid ikimine A.  相似文献   

17.
The applicability of elemental phosphorus as a modifier of palladium catalysts for hydrogenation was demonstrated, and the conditions for the synthesis of nanoparticles that are highly efficient in hydrogenation catalysis were optimized. The modifying effect of elemental phosphorus depends on the P/Pd ratio; it is associated with changes in the catalyst dispersity and the nature of the formed nanoparticles containing various palladium phosphides (PdP2, Pd5P2, and Pd6P) and Pd(0) clusters. The main stages of the formation of palladium catalysts for hydrogenation were determined, and a model of an active catalyst, in which the Pd6P phosphide is the core of a nanoparticle and Pd(0) clusters form a shell, was proposed.  相似文献   

18.
A palladium-catalyzed iodine atom transfer cycloisomerization of (Z)-1-iodo-1,6-diene has been developed, which provides a facile method to construct six-memebered heterocycles bearing an alkyl iodide group. The ligand screening shows that both the type and the quantity of ligand impose significant influences on this transformation, and the combination of 30 mol % 1,1'-bis(diphenylphosphino)ferrocene (DPPF) and 10 mol % Pd(OAc)(2) is the optimal choice. The catalytic cycle, consisting of oxidative addition of Pd(0) to vinyl iodide, intramolecular alkene insertion, and alkyl iodide reductive elimination, has been proposed and eventually supported by convincing evidence from a series of control experiments. More importantly, these control experiments disclose some features of the event of alkyl iodide reductive elimination: (1) this reductive elimination is proved to be a stereospecific process; and (2) both alkyl iodide oxidative addition and reductive elimination are not effected by a TEMPO additive. Besides its ability to undergo oxidative addition, the catalyst (palladium + DPPF) could also promote a radical transfer process. The findings described in this paper will be helpful for further development of the metal-catalyzed formation of a carbon-halide bond.  相似文献   

19.
由于纳米材料的小尺寸效应,在异相催化剂中,超小的催化剂颗粒往往具有很好的催化性能,多种多样的合成稳定的小纳米颗粒的方法如百花齐放地报道出来.在这些合成方法中,为了防止小颗粒的长大,往往需要稳定剂,常用的稳定剂如功能性纳米材料,树枝状分子等.但是,由于其稳定性较差,制备超小的纳米颗粒往往非常困难,表面吸附的稳定剂也会影响其催化活性.Suzuki反应在现代精细化工合成中具有非常重要的地位.合成容易回收分离的且足以催化氯苯的异相Pd催化剂,将是一个重大的突破.我们使用单电子转移活性自由基聚合(SET-LRP)方法,合成了夹心型的PEG-PNIPEM聚合物,PNIPAM聚合在PEG-1的两端,两端都连接了25个NIPAM分子.通过氢核磁共振(1H NMR),凝胶渗透色谱(GPC)和傅里叶变化红外光谱(FTIR),我们证明了PNIPAM已经成功地接枝在PEG的两端,PEG-PNIPAM的数均分子量Mn,GPC为7841.通过简单的负载流程,我们将Pd纳米颗粒成功的地负载在PEG-PNIPAM共聚物上,得到Pd/PEG-PNIPAM催化剂,Pd的负载量为4.4 wt%.在透射照片中,PEG-PNIPAM看起来像一个薄薄的片层.Pd的团簇颗粒很小,最大约2 nm.我们测量了制得的催化剂Pd/PEG-PNIPAM水溶液随着温度变化的光透过率曲线,最后确定该材料的LCST为41℃.我们认为在温度高于LCST进行反应时,催化剂的载体由亲水变成亲油,这样亲油的反应物分子将容易向催化剂载体扩散并富集.催化剂会形成一个亲油的微环境富集反应物,并形成反应微环境将大大提高催化速率.该催化剂在Suzuki反应中表现出了极好的催化能力.使用该催化剂催化Suzuki反应,我们发现苯硼酸和碘苯在80℃反应时10s内即可完全转化,TOF为4.3× 104 h-1.对于异相Pd催化剂而言,达到这个TOF是非常难得的,可与活性很高的均相催化剂比拟.室温下催化速率明显减慢,但也仍在1 min内转化完全,TOF为7.2×103h-1.当加大反应物的量,反应物/催化剂的比从120增加到1600,反应在3 min内达到100%转化,TOF为3.2× 104 h-1.即使使用苯硼酸和氯苯进行反应,也在5 min内达到了65%的转化.异相Pd催化剂催化氯苯的Suzuki反应是很难进行的,表明该纳米材料具有极佳的催化活性.然而,在催化苯硼酸与碘苯的连续3次反应中,催化剂的活性明显降低,直至失活.使用后的催化剂颗粒长大至几百纳米,许多小颗粒被包裹于其中.Pd颗粒有所长大,PEG-PNIPAM相互缠绕发生团聚,这也就是催化剂失活的原因.由于Pd/PEG-PNIPAM复合物可以通过其温度响应性回收,我们认为其在高效催化方面具有很好的应用前景.  相似文献   

20.
The polystyrene-immobilised palladacyclic complexes [Pd(TFA)(kappa2-N,C-C6H4CH2NMe2){P(C6H4-4-PS)Cy2}] and [PdCl(kappa2-P,C-{P(OC6H2-2,4-tBu2)(OC6H3-2,4-tBu2)2}{P(C6H4-4-PS)Cy2}](PS = polystyrene) and the homogeneous analogues [Pd(TFA)(kappa2-N,C-C6H4CH2NMe2)(PPhCy2)] and PdCl(kappa2-P,C-{P(OC6H2-2,4-tBu2)(OC6H3-2,4-tBu2)2}(PPhCy2)] were synthesised and characterised. The X-ray structure of one of the homogeneous analogues, [Pd(TFA)(kappa2-N,C-C6H4CH2NMe2)(PPhCy2)] was determined. All the complexes have been tested and show good activity in the Suzuki coupling of aryl chloride substrates. While the polystyrene-immobilised complexes are not recyclable, they are easily extracted and show low levels of palladium leaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号