首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Fe(2)P structure (P62m) features two 3-fold Fe positions and both 2-fold and 1-fold P sites, and variations in occupancies of the latter pair yield the reported diversity of results. The known Sc(6)TTe(2) examples for T = Fe-Ni are herein extended to four heavier transition metal T derivatives. An attempt to synthesize bismuth analogues led to the novel inverse derivative in which fractional Te (vice T) occupies the smaller tricapped trigonal prismatic (TTP) Sc polyhedron, and Bi rather than Te occurs in the larger TTP of Sc, with parallel reversal of polarity in the bonding. The reported Lu(8)Te, which is distributed as Lu(6)TeLu(2), is the only example in which a transition metal occupies the normal 2-fold P or Te non-metal position, with corresponding large effects on the bonding. Lutetium otherwise does not form R(6)TTe(2) analogues, but the novel Lu(6)MoSb(2) isotype occurs instead. Extended Hückel calculations are presented for five examples, and the structural and bonding regularities and varieties are discussed further.  相似文献   

2.
Diborane(6) dianions with substituents that are bonded to boron via carbon are very reactive and therefore only a few examples are known. Diborane(6) derivatives are the simplest catenated boron compounds with an electron‐precise B–B σ‐bond that are of fundamental interest and of relevance for material applications. The homoleptic hexacyanodiborane(6) dianion [B2(CN)6]2− that is chemically very robust is reported. The dianion is air‐stable and resistant against boiling water and anhydrous hydrogen fluoride. Its salts are thermally highly stable, for example, decomposition of (H3O)2[B2(CN)6] starts at 200 °C. The [B2(CN)6]2− dianion is readily accessible starting from 1) B(CN)32− and an oxidant, 2) [BF(CN)3] and a reductant, or 3) by the reaction of B(CN)32− with [BHal(CN)3] (Hal=F, Br). The latter reaction was found to proceed via a triply negatively charged transition state according to an SN2 mechanism.  相似文献   

3.
Kubatko KA  Burns PC 《Inorganic chemistry》2006,45(25):10277-10281
Two novel U6+ compounds, Sr5(UO2)20(UO6)2O16(OH)6(H2O)6 (SrFm) and Cs(UO2)9U3O16(OH)5 (CsFm), have been synthesized by mild hydrothermal reactions. The structures of SrFm (orthorhombic, C2221, a = 11.668(1), b = 21.065 (3), c = 13.273 A, V = 3532.5(1) A3, Z = 2) and CsFm (trigonal, R3c, a = 11.395(2), c = 43.722(7) A, V = 4916.7(1) A3, Z = 6) are rare examples of uranyl compounds that contain cation-cation interactions where an O atom of one uranyl ion is directly linked to another uranyl ion. Both structures are complex frameworks. SrFm contains sheets of polyhedra that are linked through cation-cation interactions with uranyl ions located between the sheets. CsFm possesses an unusually complex framework of vertex- and edge-sharing U6+ polyhedra that incorporates cation-cation interactions.  相似文献   

4.
The structural characterization of two new sodium phenolate complexes, containing ortho-amino substituents, enables the influence of intramolecular coordination on the aggregation of sodium phenolate complexes to be determined. Crystals of hexameric [NaOC(6)H(4)(CH(2)NMe(2))-2](6) (1a) are monoclinic, space group P2(1)/c, with a = 11.668(4) ?, b = 18.146(4) ?, c = 14.221(5) ?, beta = 110.76(3) ?, V = 2815.5(16) ?(3), and Z = 2; R = 0.0736 for 2051 reflections with I > 2.0sigma(I). Complex 1a contains a unique Na(6)O(6) core, consisting of two face-fused cubes, with the ortho-amino substituent of each phenolate coordinating to a sodium atom. In addition, two of the phenolate ligands have an eta(2)-arene interaction with an additional sodium atom in the core. Crystals of dimeric [(NaOC(6)H(2)(CH(2)NMe(2))(2)-2,6-Me-4)(HOC(6)H(2)(CH(2)NMe(2))(2)-2,6-Me-4)](2) (2b) are triclinic, space group P&onemacr;, with a = 10.0670(8) ?, b = 10.7121(7) ?, c = 27.131(3) ?, alpha = 92.176(8) degrees, beta = 99.928(8) degrees, gamma = 106.465(6) degrees, V = 2752.1(4) ?(3), and Z = 2; R = 0.0766 for 5329 reflections with I > 2.0sigma(I). Dimeric complex 2b contains two phenolate ligands, which bridge the two sodium atoms, each coordinating with one ortho-amino substituent to a sodium atom, while the second available ortho-amino substituent remains pendant. The coordination sphere of each sodium atom is completed by a (neutral) bidentate O,N-coordinated parent phenol molecule. The second ortho-amino substituent of this neutral phenol is involved in a hydrogen bridge with its acidic hydrogen. On the basis of these two new crystal structures and previously reported solid state structures for sodium phenolate complexes, it is shown that the introduction of first one and then two ortho-amino substituents into the phenolate ligands successively lowers the degree of association of these complexes in the solid state. In this process, the basic Na(2)O(2) building block of the molecular structures remains intact.  相似文献   

5.
The X-band EPR study of a polycrystalline Cs2Cu(ZrF6)2*6H2O demonstrates a feature of plasticity of the Jahn-Teller Cu(H2O)6 complex in the crystal lattice of this compound. The temperature- and pressure-induced evolution of the spectra shows that the copper complex is extremely sensitive to these factors, which due to the ferroelastic properties of the compound studied modify the internal tetragonal and orthorhombic strains acting on the complex. It is supported by the analysis of the temperature dependencies of the principal values of the g-factor under various pressures, indicating that the complex varies its shape adapting it to the varied conditions. A pressure-induced phase transition is discovered.  相似文献   

6.
The substitution of Ga(3+) into the Jahn--Teller distorted, antiferromagnetic perovskites LaMnO(3) and NdMnO(3) strongly affects both the crystal structures and resulting magnetic ordering. In both compounds the Ga(3+) and Mn(3+) cations are disordered over the six coordinate sites. La(2)GaMnO(6) is a ferromagnetic insulator (T(c) = 70 K); a moment per Mn cation of 2.08(5) mu(B) has been determined by neutron powder diffraction at 5 K. Bond length and displacement parameter data suggest Jahn--Teller distortions which are both coherent and incoherent with the Pnma space group symmetry of the perovskite structure (a = 5.51122(4) A, b = 7.80515(6) A, c = 5.52947(4) A) at room temperature. The coherent distortion is strongly suppressed in comparison with the parent LaMnO(3) phase, but the displacement ellipsoids suggest that incoherent distortions are significant and arise from local Jahn--Teller distortions. The preparation of the new phase Nd(2)GaMnO(6) has been found to depend on sample cooling rates, with detailed characterization necessary to ensure phase separation has been avoided. This compound also adopts the GdFeO(3)-type orthorhombically distorted perovskite structure (space group Pnma, a = 5.64876(1) A, b = 7.65212(2) A, c = 5.41943(1) A at room temperature). However, the B site substitution has a totally different effect on the Jahn--Teller distortion at the Mn(3+) centers. This phase exhibits a Q(2) mode Jahn--Teller distortion similar to that observed in LaMnO(3), although reduced in magnitude as a result of the introduction of Ga(3+) onto the B site. There is no evidence of a dynamic Jahn-Teller distortion. At 5 K a ferromagnetically ordered Nd(3+) moment of 1.06(6) mu(B) is aligned along the y-axis and a moment of 2.8(1) mu(B) per Mn(3+) is ordered in the xy plane making an angle of 29(2) degrees with the y-axis. The Mn(3+) moments couple ferromagnetically in the xz plane. However, along the y-axis the moments couple ferromagnetically while the x components are coupled antiferromagnetically. This results in a canted antiferromagnetic arrangement in which the dominant exchange is ferromagnetic. Nd(2)GaMnO(6) is paramagnetic above 40(5) K, with a paramagnetic moment and Weiss constant of 6.70(2) mu(B) and 45.9(4) K, respectively. An ordered moment of 6.08(3) mu(B) per Nd(2)GaMnO(6) formula unit was measured by magnetometry at 5 K in an applied magnetic field of 5 T.  相似文献   

7.
The Crystal Structure of Li2Pt(OH)6 and Na2Pt(OH)6 The crystal structure of Li2Pt(OH)6 and Na2Pt(OH)6, trigonal, space group P3 1m-D, is closely related to that of Li2ZrF6, with alkali atoms occupying different positions. Electrostatic lattice energies are calculated in order to predict probale hydrogen positions and to discuss this structural difference.  相似文献   

8.
Designed ferromagnetic, ferroelectric Bi(2)NiMnO(6)   总被引:1,自引:0,他引:1  
A newly designed ferromagnetic, ferroelectric compound, Bi(2)NiMnO(6), was prepared by high-pressure synthesis at 6 GPa. The crystal structure, as determined by synchrotron X-ray powder diffraction, is a heavily distorted double perovskite with Ni(2+) and Mn(4+) ions ordered in a rock-salt configuration. The presence of 6s(2) lone pairs of Bi(3+) ions and the covalent Bi-O bonds give ferroelectric properties with T(CE) of 485 K, while -Ni(2+)-O-Mn(4+)-O-Ni(2+)- magnetic paths lead to a ferromagnetism with T(CM) of 140 K. This simple material design to distribute two magnetic elements with and without e(g) electrons on B sites of Bi- and Pb-based perovkites can be applied to other Bi(2)M(2+)M'(4+)O(6) and Pb(2)M(3+)M'(5+)O(6) systems to search for newer ferromagnetic ferroelectrics.  相似文献   

9.
Redetermination of the Crystal Structures of the Hexahydroxometallates Na2Sn(OH)6, K2Sn(OH)6, and K2Pb(OH)6 Slow cooling down of hot saturated hydroxo stannate‐ resp. ‐plumbate solutions gives crystals of Na2Sn(OH)6, K2Sn(OH)6, and K2Pb(OH)6 well suited for an X‐ray structure determination. With these crystals the so far known crystal data were verified, determined more precisely and H‐positions found for the first time. The compounds crystallize rhombohedral in the space group R 3. The hexagonal unit cells contain three formula units with Na2Sn(OH)6: a = 5.951(1) Å, c = 14.191(2) Å, c/a = 2.384 K2Sn(OH)6: a = 6.541(1) Å, c = 12.813(4) Å, c/a = 1.959 K2Pb(OH)6: a = 6.625(1) Å, c = 12.998(2) Å, c/a = 1.962 The compounds are not isotypic whereas the atoms occupy in all three cases the same Wyckoff positions. Na2Sn(OH)6 has with an hcp packing of O a CdI2 like superstructure with Na and Sn in octahedral interstices. Hydrogen bonds O–H…O–H play a role in solid K2Sn(OH)6 and K2Pb(OH)6. In these compounds the potassium ions are shifted from an octahedral coordination in an hcp packing of O. They have nine nearest O‐neighbours. The hydrogen bonds are investigated by Raman spectroscopy.  相似文献   

10.
The present work has provided a complete set of assignments for the vibrational spectrum of Rb(2)PtH(6) and Rb(2)PtD(6). To confirm the assignments, a periodic density functional theory (DFT) code has been applied to the analysis of the inelastic neutron scattering (INS) spectrum of an ionic material for the first time. The work has also provided an explanation for the unusual infrared spectrum of the potassium salt. The most significant aspect of the work is the use of the momentum transfer information provided by an INS chopper spectrometer. The straightforward method employed for the analysis of the data is applicable to any molecular system (organic or inorganic) and demonstrates the potential of these instruments for chemistry. Periodic DFT was also used to study the other A(2)PtH(6) (A = alkali metal) including, the at present, unknown Li salt, which is found to be stable. The DFT studies have also highlighted the crucial role of the cation in removing charge from the transition metal and "hydride" ligand. It is suggested that this is a general occurrence.  相似文献   

11.
《Solid State Sciences》2004,6(6):519-522
The new compound Co6(TeO3)2(TeO6)Cl2 has been isolated during an investigation of the system CoO:CoCl2:TeO2. The new compound is deep purple in color and crystallizes in the tetragonal system, space group P42/mbc, a=8.3871(7) Å, c=18.5634(19) Å, Z=4. The Co(II) ions have octahedral [Co1O6] and tetrahedral [Co2O3Cl] coordinations. Tellurium is present both as Te(IV) with a tetrahedral [Te1O3E] coordination, where E is the 5s2 lone-pair and as Te(VI) with an octahedral [Te2O6] coordination. The structure is made up of intersecting layers of tetrahedra forming channels comprising octahedra chains that run along the c-axis. The new compound is the first cobalt tellurium oxochloride described.  相似文献   

12.
Raman microscopy has been used to study the molecular structure of a synthetic goudeyite (YCu(6)(AsO(4))(3)(OH)(6) x 3H(2)O). These types of minerals have a porous framework similar to that of zeolites with a structure based upon (A(3+))(1-x)(A(2+))(x)Cu(6)(OH)(6)(AsO(4))(3-x)(AsO(3)OH)(x). Two sets of AsO stretching vibrations were found and assigned to the vibrational modes of AsO(4) and HAsO(4) units. Two Raman bands are observed in the region 885-915 and 867-870 cm(-1) region and are assigned to the AsO stretching vibrations of (HAsO(4))(2-) and (H(2)AsO(4))(-) units. The position of the bands indicates a C(2v) symmetry of the (H(2)AsO(4))(-) anion. Two bands are found at around 800 and 835 cm(-1) and are assigned to the stretching vibrations of uncomplexed (AsO(4))(3-) units. Bands are observed at around 435, 403 and 395 cm(-1) and are assigned to the nu(2) bending modes of the HAsO(4) (434 and 400 cm(-1)) and the AsO(4) groups (324 cm(-1)).  相似文献   

13.
A new hexanuclear rhenium cluster encapsulated by six iridium complexes, [Re6Te8(CN)6][(Ir(CO)(PPh3)2)6](OTf)2 (3), which is effective in catalyzing the hydrogenation of p-CH3C6H4C[triple bond]CH to p-CH3C6H4CH=CH2 has been prepared.  相似文献   

14.
A novel series of (2-amino)-6-(2-aminoethyl)pyridines were prepared by a convenient Suzuki-Miyaura coupling approach from 2-amino-6-bromopyridines. Benzyl vinylcarbamate was first treated with 9-BBN followed by aqueous NaOH and then the appropriate bromopyridine precursors were added into the mixture. The mixture was finally heated in presence of a palladium catalyst to provide the corresponding products in overall high yields. The procedure is extended to the preparation of related pyrazine and pyrimidine compounds as well as (2-amido)- and (2-alkoxy)-6-(2-aminoethyl)pyridines.  相似文献   

15.
The reaction of the anticancer active compound [Rh(2)(mu-O(2)CCH(3))(2)(bpy)(2)(CH(3)CN)(2)][BF(4)](2) (1) (bpy = 2,2'-bipyridine) with NaC(6)H(5)S under anaerobic conditions yields Rh(2)(eta(1)-C(6)H(5)S)(2)(mu-C(6)H(5)S)(2)(bpy)(2).CH(3)OH (2), which was characterized by UV-visible, IR, and (1)H NMR spectroscopies as well as single-crystal X-ray crystallography. Compound 2 crystallizes as dark red platelets in the monoclinic space group C2/c with cell parameters a = 20.398(4) A, b = 11.861(2) A, c = 17.417(4) A, beta = 108.98 degrees, V = 3984.9(14) A(3), Z = 4. The main structural features are the presence of a [Rh(2)](4+) core with a Rh-Rh distance of 2.549(2) A bridged by two benzene thiolate ligands in a butterfly-type arrangement. The axial positions of the [Rh(2)](4+) core are occupied by two terminal benzene thiolates. Cyclic voltammetric studies of 2 reveal that the compound exhibits an irreversible oxidation at +0.046 V in CH(3)CN, which is in accord with the fact that the compound readily oxidizes in the presence of O(2). The fact that this unusual dirhodium(II/II) thiolate compound is formed under these conditions is an important first step in understanding the metabolism of dirhodium anticancer active compounds with thiol-containing peptides and proteins.  相似文献   

16.
Compounds adopting two new structure types containing discrete lanthanide clusters have been found, CsR(R6CoI12)2 (R = Gd or Er) and (CeI)0.26(Ce6MnI9)2. CsEr(Er6CoI12)2 and CsGd(Gd6CoI12)2 were synthesized in reactions of CsI, RI3, CoI2, and R metals (3:19:6:23) heated to 750 degrees C for 500 h followed by slow cooling (0.1 degrees C/min). The X-ray crystal structure of CsEr(Er6CoI12)2 was solved in the Pa3 space group with a = 18.063(2) A at 250 K (Z = 4, R1 [I > 2sigma(I)] = 0.0459). (CeI)0.26(Ce6MnI9) was synthesized by combining KI, CeI3, MnI2, and Ce metal and heating to 850 degrees C for 500 h. The single-crystal X-ray structure for (CeI)0.26(Ce6MnI9)2 was solved in the trigonal, P3 (147) space group with lattice parameters of a = 11.695(1) A and c = 10.8591(2) A (Z = 2, R1 [I > 2sigma(I)] = 0.0895). Elemental analyses (X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS)) were performed and show the absence of potassium in the structure. A disorder model was refined for the atoms in the large cavity. The magnetic susceptibility data for CsGd(Gd6CoI12)2 is consistent with strong intracluster ferromagnetic coupling, but intercluster antiferromagnetic coupling suppresses the susceptibility below 70 K.  相似文献   

17.
The dinuclear cation [(C(6)Me(6))(2)Ru(2)(PPh(2))H(2)](+) (1) has been studied as the catalyst for the hydrogenation of carbon-carbon double and triple bonds. In particular, [1][BF(4)] turned out to be a highly selective hydrogenation catalyst for olefin functions in molecules also containing reducible carbonyl functions, such as acrolein, carvone, and methyljasmonate. The hypothesis of molecular catalysis by dinuclear ruthenium complexes is supported by catalyst-poisoning experiments, the absence of an induction period in the kinetics of cyclohexene hydrogenation, and the isolation and single-crystal X-ray structure analysis of the tetrafluoroborate salt of the cation [(C(6)Me(6))(2)Ru(2)(PPh(2))(CHCHPh)H](+) (2), which can be considered as an intermediate in the case of phenylacetylene hydrogenation. On the basis of these findings, a catalytic cycle is proposed which implies that substrate hydrogenation takes place at the intact diruthenium backbone, with the two ruthenium atoms acting cooperatively in the hydrogen-transfer process.  相似文献   

18.
Geometrical and topological analysis of zeolite crystal structures having a tetrahedral framework of the cancrinite (CAN) type, namely, (CAN) Na8(Al6Ge6O24)Ge(OH)6(H2O)2 (acentric space group P63, hP64, Na-CAN) and Cs2Na6(Al6Ge6O24)Ge(OH)6 (P63, hP52, CsNa-CAN), is carried out with the use of computer techniques (the TOPOS 4.0 program package). An AT 6 hexapolyhedral precursor nanocluster centered with a template cation A (Na, Cs) is identified. The topological type of a two-dimensional (2D) crystalforming T-net 4.6.12, which corresponds to a uninodal semiregular Shubnikov net, is recognized. The full 3D reconstruction of crystal structure self-assembly is performed as follows: precursor nanocluster → primary chain → microlayer → microframework → … framework. The symmetry of an AT6 precursor nanocluster is described by point group 3; the symmetry axis passes through the center of the nanocluster and cation A. The coordination number (CN) of a precursor nanocluster, which characterizes the nanocluster stacking in the macrostructure, is six. In both structures, six Na atoms and a Ge(OH)6 polyhedral species are spacers filling the voids between AT 6 precursor nanoclusters. The Ge(OH)6 polyhedral species is characterized by four and two orientationally allowed positions in Na-CAN and CsNa-CAN, respectively. The minimal number of suprapolyhedral AT 6 precursor nanoclusters required for the 3D microframework to form is 16; that is, 96 tetrahedra are involved in microframework self-assembly.  相似文献   

19.
From the system MF(2)/PF(5)/XeF(2)/anhydrous hydrogen fluoride (aHF), four compounds [Sr(XeF(2))(3)](PF(6))(2), [Pb(XeF(2))(3)](PF(6))(2), [Sr(3)(XeF(2))(10)](PF(6))(6), and [Pb(3)(XeF(2))(11)](PF(6))(6) were isolated and characterized by Raman spectroscopy and X-ray single-crystal diffraction. The [M(XeF(2))(3)](PF(6))(2) (M = Sr, Pb) compounds are isostructural with the previously reported [Sr(XeF(2))(3)](AsF(6))(2). The structure of [Sr(3)(XeF(2))(10)](PF(6))(6) (space group C2/c; a = 11.778(6) Angstrom, b = 12.497(6) Angstrom, c = 34.60(2) Angstrom, beta = 95.574(4) degrees, V = 5069(4) Angstrom(3), Z = 4) contains two crystallographically independent metal centers with a coordination number of 10 and rather unusual coordination spheres in the shape of tetracapped trigonal prisms. The bridging XeF(2) molecules and one bridging PF(6)- anion, which connect the metal centers, form complicated 3D structures. The structure of [Pb(3)(XeF(2))(11)](PF(6))(6) (space group C2/m; a = 13.01(3) Angstrom, b = 11.437(4) Angstrom, c = 18.487(7) Angstrom, beta = 104.374(9) degrees, V = 2665(6) Angstrom(3), Z = 2) consists of a 3D network of the general formula {[Pb(3)(XeF(2))(10)](PF(6))(6)}n and a noncoordinated XeF(2) molecule fixed in the crystal structure only by weak electrostatic interactions. This structure also contains two crystallographically independent Pb atoms. One of them possesses a unique homoleptic environment built up by eight F atoms from eight XeF(2) molecules in the shape of a cube, whereas the second Pb atom with a coordination number of 9 adopts the shape of a tricapped trigonal prism common for lead compounds. [Pb(3)(XeF(2))(11)](PF(6))(6) and [Sr(3)(XeF(2))(10)](PF(6))(6) are formed when an excess of XeF(2) is used during the process of the crystallization of [M(XeF(2))(3)](PF(6))(2) from their aHF solutions.  相似文献   

20.
The reaction of Sn(Cl)C(6)H(3)-2,6-Dipp(2) (Dipp = C(6)H(3)-2,6-Pr(i)()(2)) with a stoichiometric amount of potassium in benzene affords 2,6-Pr(i)()(2)-H(3)C(6)SnSnC(6)H(3)-2,6-Pr(i)()(2) (1) as dark blue-green crystals. The compound 1 is a tin analogue of an alkyne. It was characterized by (1)H and (13)C NMR and UV-vis spectroscopy, cyclic voltammetry, combustion analysis and X-ray crystallography. The structural data show that 1 has a trans-bent, planar C(ipso)SnSnC(ipso) skeleton with a Sn-Sn bond distance of 2.6675(4) A and a Sn-Sn-C angle of 125.24(7) degrees. The Sn-Sn distance, which is ca. 0.15 A shorter than a conventional Sn-Sn single bond, and the trans-bent structure indicate the presence Sn-Sn multiple bond character unlike the related singly bonded ArPbPbAr species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号