首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new dendritic oligoarylamine, N,N,N',N',N",N"-hexakis[4-(di-4-anisylamino)phenyl]- 1,3,5-benzenetriamine (BTA) 2, which contains a 1,3,5-benzenetriamine molecular unit as an potential precursor of a high-spin molecule and three oligoarylamine moieties as spin-carrying units surrounding the core BTA, has been prepared by the sequential palladium-catalyzed amination reactions. The redox property has been investigated by cyclic voltammetry, and the highly charged states up to the hexacation are accessible to 2. The polycationic high-spin species have been generated by stepwise chemical oxidation, and the electronic structures have been examined in detail by the continuous wave (CW) and pulsed ESR spectroscopy in comparison with the previously studied 1. The pulsed ESR technique enabled us to determine the definite spin multiplicity of the generated polycationic species of 2. It was confirmed that the dominant oxidized species observed by the two- and three-electron oxidations were assigned to the spin triplet 2(2+) and the spin quartet 2(3+), respectively. Moreover, these high-spin polycationic species turned out to be far more stable as compared to 1, and the isolation of 2(3+) as the SbCl(6)(-) salt has been accomplished. The temperature dependence of the magnetic susceptibility for the 2(3+)(SbCl(6)(-))(3) salt revealed that the intramolecular ferromagnetic interaction exists in 2(3+), and moreover, the trication 2(3+) was found to be deformed in the solid state.  相似文献   

2.
Islam MM  Bredow T  Gerson A 《Chemphyschem》2011,12(17):3467-3473
The electronic properties of vanadium-doped rutile TiO(2) are investigated theoretically with a Hartree-Fock/DFT hybrid approach. The most common oxidation states (V(2+), V(3+), V(4+), and V(5+)) in different spin states are investigated and their relative stability is calculated. The most stable spin states are quartet, quintet, doublet, and singlet for V(2+), V(3+), V(4+), and V(5+) doping, respectively. By comparing the formation energy with respect to the parent oxides and gas-phase oxygen (ΔE), we conclude that V(4+) (ΔE=145.3 kJ mol(-1)) is the most likely oxidation state for vanadium doping with the possibility of V(5+) doping (ΔE=283.5 kJ mol(-1)). The energetic and electronic properties are converged with dopant concentrations in the range of 0.9 to 3.2%, which is within the experimentally accessible range. The investigation of electronic properties shows that V(4+) doping creates both occupied and unoccupied vanadium states in the band gap and V(5+) doping creates unoccupied states at the bottom of the conduction band. In both cases there is a significant reduction of the band gap by 0.65 to 0.75 eV compared to that of undoped rutile TiO(2).  相似文献   

3.
The mechanism of the unique dynamic electron polarization of the quartet (S = 3/2) high-spin state via a doublet-quartet quantum-mixed state and detail theoretical calculations of the population transfer are reported. By the photo-induced electron transfer, the quantum-mixed charge-separate state is generated in acceptor-donor-radical triad (A-D-R). This mechanism explains well the unique dynamic electron polarization of the quartet state of A-D-R. The generation of the selectively populated quantum-mixed state and its transfer to the strongly coupled pure quartet and doublet states have been treated both by a perturbation approach and by exact numerical calculations. The analytical solutions show that generation of the quantum-mixed states with the selective populations after de-coherence and/or accompanying the (complete) dephasing during the charge-recombination are essential for the unique dynamic electron polarization. Thus, the elimination of the quantum coherence (loss of the quantum information) is the key process for the population transfer from the quantum-mixed state to the quartet state. The generation of high-field polarization on the strongly coupled quartet state by the charge-recombination process can be explained by a polarization transfer from the quantum-mixed charge-separate state. Typical time-resolved ESR patterns of the quantum-mixed state and of the strongly coupled quartet state are simulated based on the generation mechanism of the dynamic electron polarization. The dependence of the spectral pattern of the quartet high-spin state has been clarified for the fine-structure tensor and the exchange interaction of the quantum-mixed state. The spectral pattern of the quartet state is not sensitive towards the fine-structure tensor of the quantum-mixed state, because this tensor contributes only as a perturbation in the population transfer to the spin-sublevels of the quartet state. Based on the stochastic Liouville equation, it is also discussed why the selective population in the quantum-mixed state is generated for the "finite field" spin-sublevels. The numerical calculations of the elimination of the quantum coherence (de-coherence and/or dephasing) are demonstrated. A new possibility of the enhanced intersystem crossing pathway in solution is also proposed.  相似文献   

4.
Quantum mechanical/molecular mechanical (QM/MM) methods have been used in conjunction with density functional theory (DFT) and correlated ab initio methods to predict the electron paramagnetic resonance (EPR) and Mossbauer (MB) properties of Compound I in P450(cam). For calibration purposes, a small Fe(IV)-oxo complex [Fe(O)(NH(3))(4)(H(2)O)](2+) was studied. The (3)A(2) and (5)A(1) states (in C(4)(v)() symmetry) are found to be within 0.1-0.2 eV. The large zero-field splitting (ZFS) of the (FeO)(2+) unit in the (3)A(2) state arises from spin-orbit coupling with the low-lying quintet and singlet states. The intrinsic g-anisotropy is very small. The spectroscopic properties of the model complex [Fe(O)(TMC)(CH(3)CN)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) are well reproduced by theory. In the model complexes [Fe(O)(TMP)(X)](+) (TMP = tetramesitylporphyrin, X = nothing or H(2)O) the computations again account for the observed spectroscopic properties and predict that the coupling of the (5)A(1) state of the (FeO)(2+) unit to the porphyrin radical leads to a low-lying sextet/quartet manifold approximately 12 kcal/mol above the quartet ground state. The calculations on cytochrome P450(cam), with and without the simulation of the protein environment by point charges, predict a small antiferromagnetic coupling (J approximately -13 to -16 cm(-)(1); H(HDvV) = - 2JS(A)S(B)) and a large ZFS > 15 cm(-)(1) (with E/D approximately 1/3) which will compete with the exchange coupling. This leads to three Kramers doublets of mixed multiplicity which are all populated at room temperature and may therefore contribute to the observed reactivity. The MB and ligand hyperfine couplings ((14)N, (1)H) are fairly sensitive to the protein environment which controls the spin density distribution between the porphyrin ring and the axial cysteinate ligand.  相似文献   

5.
The geometries and energies of 4-, 3-, and 2-dehydrophenylnitrenes (3, 4, and 5) are investigated using complete active space self-consistent field (CASSCF), multiconfiguration quasi-degenerate second-order perturbation (MCQDPT), and internally contracted multiconfiguration-reference configuration interaction (MRCI) theories in conjunction with a correlation consistent triple-zeta basis set. 4-Dehydrophenylnitrene 3 has a quartet ground state ((4)A(2)). The adiabatic excitation energies to the (2)A(2), (2)B(2), (2)A(1), and (2)B(1) states are 5, 21, 34, and 62 kcal mol(-1), respectively. The (2)B(2) state has pronounced closed-shell carbene/iminyl radical character, while the lowest-energy (2)B(1) state is a combination of a planar allene and a 2-iminylpropa-1,3-diyl. The MCQDPT treatment overestimates the excitation energy to (2)B(2) significantly as compared to CASSCF and MRCI+Q. Among quartet states, (4)A(2)-3 is the most stable one, while those of 4 and 5 (both (4)A') are 3 and 1 kcal mol(-1) higher in energy. 5 also has a quartet ground state and a (2)A' ' state 7 kcal mol(-1) higher in energy. On the other hand, the doublet-quartet energy splitting is -6 kcal mol(-1) for 4 in favor of the doublet state ((2)A'). Hence, (2)A'-4 is the most stable dehydrophenylnitrene, 3.5 kcal mol(-1) below (4)A(2) of 3. The geometry of (2)A'-4 shows the characteristic features of through-bond interaction between the in-plane molecular orbitals at N and at C3. The (2)A' state of 4 resembles the (2)A(1) state of 3 and lies 32 kcal mol(-1) above (4)A'-4. The lowest-energy (2)A' state of 5, on the other hand, resembles the (2)B(2) state of 3 and lies 22 kcal mol(-1) above (4)A'-5.  相似文献   

6.
Su J  Schwarz WH  Li J 《Inorganic chemistry》2012,51(5):3231-3238
Electronic states and spectra of NpO(2)(2+) and NpO(2)Cl(4)(2-) with a Np 5f(1) ground-state configuration, related to low-lying 5f-5f and ligand-to-metal charge-transfer (CT) transitions, are investigated, using restricted-active-space perturbation theory (RASPT2) with spin-orbit coupling. Restrictions on the antibonding orbital occupations have little influence on the 5f-5f transition energies, but an important impact on the CT states with an open bonding orbital shell. The present calculations provide significant improvement over previous literature results. The assignment of the experimental electronic spectra of Cs(2)NpO(2)Cl(4) is refined, based on our calculations of NpO(2)Cl(4)(2-). Assignments on the basis of bare NpO(2)(2+) are less reliable, since the equatorial Cl ligands perturb the excited-state energies considerably. Calculated changes of the Np-O bond lengths are in agreement with the observed short symmetric-stretching progressions in the f-f spectra and longer progressions in the CT spectra of neptunyl. A possible luminescence spectrum of the lowest quartet CT state is predicted.  相似文献   

7.
Quantum chemical calculations have been carried out to determine the electronic ground state of the parent 1,3,5-triaminobenzene trication triradical (TAB3+,C6H9N3 3+) containing a six-membered benzene ring coupled with three exocyclic amino NH(*+)2 groups, each containing an unpaired electron, as the simplest model for high-spin polyarylamine polycations. Related triradicals, including the 1,3,5-trimethylenebenzene (TMB, C9H9) and its nitrogen derivatives such as the monocation C8H9N+, the dication C7H9N2 2+, and the neutral C8H8N, C7H7N2, and C6H6N3 systems containing NH groups, have also been considered. Results obtained using the CASSCF [multiconfigurational complete active space (SCF--self-consistent field)] method, with active spaces ranging from (9e/9o) to (15e/12o), followed by second-order perturbation theory [CASPT2 and MS-CASPT2 (MS--multistate)] with polarized 6-311G(d,p) and natural orbital (ANO-L) basis sets reveal the following: (i) both TAB3+ and TMB (D3h) have a quartet 4A"1 ground state with doublet-quartet 2B1-4A"1 energy gaps of 8.0+/-2.0 and 12.4+/-2.0 kcal/mol, respectively; (ii) in the neutral N series, the quartet state remains the electronic ground state, irrespective of the number of N atoms, but each with slightly reduced gap, 11 kcal/mol for C8H8N (4A"), 10 kcal/mol for C7H7N2 (4A2), and 9 kcal/mol for C6H6N3 (4A2); and (iii) the ground state of monoamino cation and diamino dication is a low-spin doublet state (2B1 for C8H9N+ and 2A2 for C7H9N2 2+) and lying well below the corresponding quartet state by 10 and 12 kcal/mol, respectively. In the monocationic and dicationic amino systems, a slight preference is found for the low-spin state, apparently violating Hund's rule. This effect is due to the splitting of the orbital energies and the presence of the positive charge whose delocalization strongly modifies the electronic distribution and some structural features. In the latter cations, the positive charge basically pushes unpaired electrons onto the ring forming a kind of distonic radical cations and thus gives a preference for a low-spin state.  相似文献   

8.
Calculations performed using both density functional theory (DFT) and the modified coupled-pair functional (MCPF) approach show that FeC5H6+ is more stable than HFeC5H5+ by about 10 kcal/mol. The ground state of FeC5H6+ is a quartet state derived from the 3d7 occupation of Fe+. For HFeC5H5+, the MCPF approach yields a sextet ground state while DFT yields a quartet; however, these two states are close in energy at both levels of theory.  相似文献   

9.
The crystal field effect and microscopic origins of the Zeeman g-factors g(//) and g(⊥) for (6)S(3d(5)) state ions at tetragonal symmetry crystal filed, taking into account the spin-spin (SS), the spin-other-orbit (SOO), and the orbit-orbit (OO) magnetic interactions besides the well-known spin-orbit (SO) magnetic interaction, have been investigated using the microscopic spin Hamiltonian theory and the complete diagonalization method (CDM). It is found that the g(//)(±1/2)≠g(//)(±5/2) and g(⊥)(±1/2)≠g(⊥)(±5/2), where the g-factors g(//)(±1/2) and g(⊥)(±1/2) express the g-factors of the ground state |M?(s)=±1/2), whereas the g-factors g(//)(±5/2) and g(⊥)(±5/2) express the g-factors of the ground state |M?(s)=±5/2). It is shown that although the SO magnetic interaction is the most important one, the contributions to the shifts of g-factors Δg(//)(=2.0023-g(//)) and Δg(⊥)(=2.0023-g(⊥)) from other three magnetic interactions including the SS, SOO, and OO magnetic interactions are appreciable and should not be omitted, especially for the shifts of g-factors Δg(//)(±5/2) and Δg(⊥)(±5/2). The individual contributions to the shifts of g-factors arising from the spin quartet states and spin doublet states have been studied. The investigations show that the Δg(//)(±1/2) and Δg(⊥)(±1/2) primarily result from the spin quartet states, whereas Δg(//)(±5/2) and Δg(⊥)(±5/2) from the spin quartet states as well as the combined effects between the spin quartet states and the spin doublet states. The contribution to the shifts of g-factors from the net spin doublet states is zero.  相似文献   

10.
The environmentally active molecule nitrogen dioxide (NO2) has been systematically studied using high level theoretical methods. The electronic ground state and the low-lying quartet states of NO2 have been investigated. Single reference restricted open-shell self-consistent field (SCF), complete active space SCF (CASSCF), spin-restricted (R) and spin-unrestricted (U) configuration interaction with single and double excitations (CISD), coupled cluster with single and double excitations (CCSD), CCSD with perturbative triple excitations [CCSD(T)], and internally contracted multireference configuration interaction (ICMRCI) methods along with Dunning's correlation consistent polarized valence cc-pVXZ and augmented cc-pVXZ (where X=T,Q,5) basis sets were used in this research. At the aug-cc-pV5Z/UCCSD(T) level the classical adiabatic excitation energies (Te values) of the three lowest-lying quartet excited states were predicted to be 83.3 kcalmol (3.61 eV, 29 200 cm(-1)) for the ? 4A2 state, 93.3 kcalmol (4.05 eV, 32 600 cm(-1)) for the b 4B2 state, and 100.8 kcalmol (4.37 eV, 35 300 cm(-1)) for the c 4A1 state. The quantum mechanical excitation energies (T 0 values) were determined to be 81.6 kcalmol (3.54 eV, 28 500 cm(-1)) for the a 4A2 state and 90.7 kcalmol (3.93 eV, 31 700 cm(-1)) for the b 4B2 state. The lowest quartet linear Renner-Teller 4Pi state gives rise to the a 4A2 state with 112.8 degrees and the b 4B2 state with 124.4 degrees <(ONO) bond angles upon bending. The b state shows some peculiar behavior. Although CASSCF, RCISD, UCISD, RCCSD, UCCSD, and RCCSD(T) methods predicted the presence of a Cs equilibrium geometry (a double minimum 4A' state), SCF, UCCSD(T), and ICMRCI wave functions predicted the C2v structure for the b 4B2 state. The importance of both dynamical and nondynamical correlation treatments for the energy difference between C2v and Cs structures of b state is highlighted in this context. The c 4A1 state is predicted to have a very small bond angle of 85.8 degrees . Potential energy diagrams with respect to the bond angles of the ground state and four quartet states are presented.  相似文献   

11.
MRCI results are reported for the vertical excitation energies (VEE) and oscillator strengths f of doublet states of OClO up to 11 eV, including 3b(1) → 4s, 4p, 3d, 5s, 5p, 4d, and most 1a(2), 8a(1), 5b(2) → 4s and 4p Rydberg states. The lowest Rydberg states 3b(1) → 4s and 3b(1) → 4p(x) have mixed valence-Rydberg character. The observed spectral bands were reassigned to include valence states which have generally higher oscillator strengths. The well-known valence state 1(2)A(2) has a VEE of 3.63 eV, and a relatively high f of 0.042. Overall, the calculated oscillator strengths are in good agreement with measured values. The lowest quartet state, 1(4)B(2), lies at 6.95 eV. Quartet Rydberg states start with 1a(2) → 4s at 9.28 eV. According to calculated vertical ionization potentials (VIP) of OClO, the second VIP at 12.59 eV is reassigned from 1(3)B(1) to 1(3)B(2) (ionization from 1a(2), rather than 8a(1)), and the third VIP at 12.63 eV from 1(1)B(1) to 1(3)B(1) (ionization from 8a(1)). Vertical electron detachment energies of OClO(-) have been calculated up to 8.9 eV. There is good agreement with experimental values.  相似文献   

12.
To elucidate the mechanisms of Zr + reacting with COS,both the quartet and doublet potential energy surfaces (PESs) for reactions of Zr + (4 F,2 D) with COS in the gas phase have been investigated in detail by means of density functional method (B3LYP).To obtain more accurate results,the coupled cluster single-point calculations (CCSD(T)) using B3LYP optimized geometries were performed.For the C-O bond activation,the calculated results indicate that both the quartet and doublet states proceed via an insertion-elimination mechanism.For the C-S bond activation,the quartet reaction has an insertion-elimination mechanism,but the doublet reaction is a direct abstraction of the sulfur atom by Zr +.The C-S bond activation is found to be energetically more favorable than the C-O bond activation.It is found that the reaction of the 4 F gound state of Zr + to yield ZrO + is spin-forbidden (Zr + (4 F) + COS (1 Σ) → ZrO + (2) + CS (1 Σ)) and the crossing points were approximately determined.All the results have been compared with the existing experimental and theoretical data.  相似文献   

13.
The cation [Si,C,O]+ has been generated by 1) the electron ionisation (EI) of tetramethoxysilane and 2) chemical ionisation (CI) of a mixture of silane and carbon monoxide. Collisional activation (CA) experiments performed for mass-selected [Si,C,O]+, generated by using both methods, indicate that the structure is not inserted OSiC+; however, a definitive structural assignment as Si(+)-CO, Si(+)-OC or some cyclic variant is impossible based on these results alone. Neutralisation-reionisation (+NR+) experiments for EI-generated [Si,C,O]+ reveal a small peak corresponding to SiC+, but no detectable SiO+ signal, and thus establishes the existence of the Si(+)-CO isomer. CCSD(T)@B3LYP calculations employing a triple-zeta basis set have been used to explore the doublet and quartet potential-energy surfaces of the cation, as well as some important neutral states. The results suggest that both Si(+)-CO and Si(+)-OC isomers are feasible; however, the global minimum is 2 pi SiCO+. Isomeric 2 pi SiOC+ is 12.1 kcal mol-1 less stable than 2 pi SiCO+, and all quartet isomers are much higher in energy. The corresponding neutrals Si-CO and Si-OC are also feasible, but the lowest energy Si-OC isomer (3A") is bound by only 1.5 kcal mol-1. We attribute most, if not all, of the recovery signal in the +NR+ experiment to SiCO+ survivor ions. The nature of the bonding in the lowest energy isomers of Si(+)-(CO,OC) is interpreted with the aid of natural bond order analyses, and the ground state bonding of SiCO+ is discussed in relation to classical analogues such as metal carbonyls and ketenes.  相似文献   

14.
Highly correlated ab initio methods were used in order to generate the potential-energy curves of the SO+ electronic states correlating to S+(4Su)+O(3Pg) and S+(2Du)+O(3Pg). These curves were used for deducing accurate spectroscopic properties for these electronic states. Our calculations predict the existence of a 2Phi state lying close in energy to the well-characterized b 4Sigma- state and several weakly bound quartet and doublet states located in the 6-9 eV internal energy range not identified yet. The spin-orbit integrals between these electronic states were evaluated using these highly correlated wave functions, allowing the discussion of the metastability and the predissociation processes forming S+ +O in their electronic ground states. Multistep spin-orbit-induced predissociation pathways are suggested. More specifically, the experimentally determined dissociative potential-energy curve [H. Bissantz et al., Z. Phys. D 22, 727 (1992)] proposed to explain the rapid SO+(b 4Sigma-, v> or =13)-->S+(4Su)+O(3Pg) reaction is found to coincide with the 2 4Pi potential-energy curve for short internuclear distances and with the repulsive 1 6Pi state for longer internuclear separations.  相似文献   

15.
Density functional theory has been used to probe the bonding and electronic properties of the homo- and heterobimetallic sp carbon chain complexes (ML(m), = (eta(5)-C(5)R(5))(eta(2)-R(2)PCH(2)CH(2)PR(2))Fe, (eta(5)-C(5)R(5))(NO)(PR(3))Re; z = 0-4). All neutral complexes are best described by MCtbd1;CCtbd1;CM electronic structures, in accord with much experimental data. The singlet dications are best described by cumulenic (+)M=C=C=C=C=M(+) valence formulations. However, the diiron and rhenium/iron dications are found to possess triplet states of nearly identical energy, clarifying experimental magnetic data. Their electronic structures have dominant *(+)MCtbd1;CCtbd1;CM(+)* character, with some spin delocalization onto the carbon chain. The mixed valence monocation radicals exhibit delocalized unpaired electrons, in accord with class III (strongly coupled) and II (weakly coupled) assignments made from experimental data earlier, with some spin density on the carbon chain. An isolable diiron trication has a doublet ground state, but some computational data suggest a close-lying quartet. For the unknown diiron tetracation, a bis(carbyne) or (2+)Fetbd1;CCtbd1;CCtbd1;Fe(2+) electronic structure is predicted. Calculated adiabatic ionization potentials show the iron endgroup to be more electron-releasing than rhenium, in accord with electrochemical data. This polarizes the electronic structures of the rhenium/iron complexes. To help validate the computed model structures, crystal structures of ((eta(5)-C(5)Me(5))Fe(eta(2)-dppe))(2)(mu-C(4)) and [((eta(5)-C(5)Me(5))Fe(eta(2)-dippe))(2)(mu-C(4))](3+) 3PF(6)(-) are determined. Data are analyzed with respect to related diruthenium and dimanganese complexes.  相似文献   

16.
The M(N) S = (3)/(2) resting state of the FeMo cofactor of nitrogenase has been proposed to have metal-ion valencies of either Mo(4+)6Fe(2+)Fe(3+) (derived from metal hyperfine interactions) or Mo(4+)4Fe(2+)3Fe(3+) (from M?ssbauer isomer shifts). Spin-polarized broken-symmetry (BS) density functional theory (DFT) calculations have been undertaken to determine which oxidation level best represents the M(N) state and to provide a framework for understanding its energetics and spectroscopy. For the Mo(4+)6Fe(2+)Fe(3+) oxidation state, the spin coupling pattern for several spin state alignments compatible with S = (3)/(2) were generated and assessed by energy and geometric criteria. The most likely BS spin state is composed of a Mo3Fe cluster with spin S(a) = 2 antiferromagnetically coupled to a 4Fe' cluster with spin S(b) = (7)/(2). This state has a low DFT energy for the isolated FeMoco cluster and the lowest energy when the interaction with the protein and solvent environment is included. This spin state also displays calculated metal hyperfine and M?ssbauer isomer shifts compatible with experiment, and optimized geometries that are in excellent agreement with the protein X-ray data. Our best model for the actual spin-coupled state within FeMoco alters this BS state by a slight canting of spins and is analogous in several respects to that found in the 8Fe P-cluster in the same protein. The spin-up and spin-down components of the LUMO contain atomic contributions from Mo(4+) and the homocitrate and from the central prismane Fe sites and muS(2) atoms, respectively. This qualitative picture of the accepting orbitals for M(N) is consistent with observations from M?ssbauer spectra of the one-electron reduced states. Similar calculations for the Mo(4+)4Fe(2+)3Fe(3+) oxidation state yield results that are in poorer agreement with experiment. Using the Mo(4+)6Fe(2+)Fe(3+) oxidation level as the most plausible resting state, the geometric, electronic and energetic properties of the one-electron redox transition to the oxidized state, M(OX), catalytically observed M(R) and radiolytically reduced M(I) states have also been explored.  相似文献   

17.
The emission and excitation spectra of Ce(3+) and Pr(3+) doped into the cubic host Cs(2)NaYF(6) have been recorded at room temperature and ~10 K using synchrotron radiation. The two 5d(1) T(2g) states of Ce(3+) have been located from the excitation spectra, whereas the E(g) state is placed above the host band gap. Decay measurements of the 5d(1) → 4f(1) Ce(3+) emission, and spectra collected using selective excitation, indicate the occupation of more than one type of site by Ce(3+) in this host lattice. By contrast, the location of features in the 4f(1)5d(1) → 4f(2) emission of Pr(3+) is independent of the excitation wavelength. Assignments are presented for some of the 4f(1)5d(1) levels and for the Pr(3+)-F(-) charge transfer band. The 5d emission lifetimes for Ce(3+) and Pr(3+) in the Cs(2)NaYF(6) host are 42 and 29 ± 1 ns, respectively, and are not temperature-dependent.  相似文献   

18.
Since the discovery of ozone depletion, the doublet electronic states of the ozone radical cation have received much attention in experimental and theoretical investigations, while the low-lying quartet states have not. In the present research, viable pathways to the quartet states from the lowest three triplet states of ozone, (3)A(2), (3)B(2), and (3)B(1), and excitations from the (2)A(1) and (2)B(2) states of the ozone radical cation have been studied in detail. The potential energy surfaces, structural optimizations, and vibrational frequencies for several states of ozone and its radical cation have been thoroughly investigated using the complete active space self-consistent field, unrestricted coupled cluster theory from a restricted open-shell Hartree-Fock reference including all single and double excitations (UCCSD), UCCSD method with the effects of connected triple excitations included perturbatively, and unrestricted coupled cluster including all single, double, and triple excitations with the effects of connected quadruple excitations included perturbatively. These methods used Dunning's correlation-consistent polarized core-valence basis sets, cc-pCVXZ (X = D, T, Q, and 5). The most feasible pathways (symmetry and spin allowed transitions) to the quartet states are (4)A(1)<--(3)A(2), (4)A(2)<--(3)A(2), (4)A(1)<--(3)B(2), (4)A(2)<--(3)B(1), (4)B(2)<--(3)B(1), (4)A(2)<--(1)A(1), (4)B(2)<--(1)A(1), and (4)A(1)<--(1)A(1) with vertical ionization potentials of 12.46, 12.85, 12.82, 12.46, 12.65, 13.43, 13.93, and 14.90 eV, respectively.  相似文献   

19.
Total spin-state energy splittings are calculated for mono- and dications of the formula {[Re]-Cn-[Re]}z+ where [Re] = eta5-(C5Me5)Re(NO)(PPh3). Cn is an even-numbered carbon chain with n ranging from 4 to 20, and z is 1 or 2. These complexes are experimentally known, and their potential role as molecular electronic devices initiated this work. We have considered the different total spin states monocation/doublet, monocation/quartet, dication/singlet, and dication/triplet. Data obtained for two density functionals BP86 and B3LYP were compared to verify the internal consistency of the results. In both ionization states, the low-spin state is the ground state, but the spin-state splittings decrease as the chain gets longer. For the dications, the splitting reaches a nearly constant value of about 10 kJ/mol with BP86 and about 4 kJ/mol with B3LYP when there are at least 14 carbon atoms in the chain, whereas for the monocations, no constant value appears to be reached asymptotically, not even if 20 carbon atoms are in the chain. For monocations, the splittings range from 138 kJ/mol (n = 4) to 68 kJ/mol (n = 20) with BP86 and from 134 kJ/mol (n = 4) to 73 kJ/mol (n = 20) with B3LYP and are thus considerably higher than those of the dications. The spin-state splittings are qualitatively mirrored by the energy splitting between the highest-occupied molecular orbital with beta spin (HOMObeta) and the lowest-unoccupied molecular orbital with alpha spin (LUMOalpha) as obtained in the low-spin state. Furthermore, the HOMOalpha-LUMOalpha gaps decrease as the carbon chain lengthens. In addition, the local distribution of the ?z expectation value is analyzed for the monocation/doublet, the monocation/quartet, and the dication/triplet state using a modified L?wdin partitioning scheme. In the monocation/doublet and the dication/triplet state, the electron spin is distributed mainly on the metal centers and slightly delocalized onto the carbon chain. In the monocation/quartet state for chain lengths of more than 8 carbon atoms, the electron spin is mainly localized on selected atoms of the chain and not on the metal centers. In all cases, the spin delocalization onto the chain increases as the chain gets longer.  相似文献   

20.
用密度泛函B3LYP方法对PuNn+(n=1,2,3)分子离子进行了理论研究,结果表明:PuN+、PuN2+分子离子能稳定存在,基态电子状态是X5∑+(PuN+)和X4∑+(PuN2+),并导出了相应的几何性质、力学性质和光谱数据.PuN3+(5∑、7∑、9∑)分子离子不能稳定存在.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号