首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approximate solution of the D-dimensional Schrödinger equation with the modified Pöschl-Teller potential is obtained with an approximation of the centrifugal term. Solution to the corresponding hyper-radial equation is given using the conventional Nikiforov-Uvarov method. The normalization constants for the Pöschl-Teller potential are also computed. The expectation values of -2> and are also obtained using the Feynman-Hellmann theorem.  相似文献   

2.
The relativistic one-dimensional Klein-Gordon equation can be exactly solved for a certain class of potentials. But the nonrelativistic Schrödinger equation is not necessarily solvable for the same potentials. It may be possible to obtain approximate solutions for the inexact nonrelativistic potential from the relativistic exact solutions by systematically removing relativistic portion. We search for the possibility with the harmonic oscillator potential and the Coulomb potential, both of which can be exactly solvable nonrelativistically and relativistically. Though a rigorous algebraic approach is not deduced yet, it is found that the relativistic exact solutions can be a good starting point for obtaining the nonrelativistic solutions.  相似文献   

3.
The trigonometric and hyperbolic Pöschl-Teller potentials are dealt with from the point of view of classical and quantum mechanics. We show that there is a natural correspondence between the algebraic structure of these two approaches for both kind of potentials. Then, the coherent states are constructed and the appropriate classical variables are compared with the expected values of their corresponding quantum operators.  相似文献   

4.
Exact solutions of the effective radial Schrödinger equation are obtained for some inverse potentials by using the point canonical transformation. The energy eigenvalues and the corresponding wave functions are calculated by using a set of mass distributions.  相似文献   

5.
The quantum dissipative motion of wave packets in confined systems with polynomial potentials is numerically investigated in the context of the Schrödinger-Langevin-Kostin equation. Oscillatory patterns are studied in detail and they confirm the validity of the correspondence principle. The transition to the stationary state is also discussed.  相似文献   

6.
The energy eigenvalues and eigenfunctions of the Schrödinger equation for Eckart potential as well as the parity-time-symmetric version of the potential in three dimensions with the centrifugal term are investigated approximately by using the Nikiforov-Uvarov method. To show the accuracy of our results, we calculate the energy eigenvalues for various values of n and l. It is found that the results are in good agreement with the numerical solutions for short-range potential (large a). For the case of 1/a i/a, the potential is also studied briefly.  相似文献   

7.
By application of the intertwining operator method to Schrödinger equations with position-dependent (effective) mass, we construct Darboux transformations, establish the supersymmetry factorization technique and show equivalence of both formalisms. Our findings prove equivalence of the intertwining technique and the method of point transformations.  相似文献   

8.
There are a lot of difficulties and troubles in quantum mechanics, when the linear Schrödinger equation is used to describe microscopic particles. Thus, we here replace it by a nonlinear Schrödinger equation to investigate the properties and rule of microscopic particles. In such a case we find that the motion of microscopic particle satisfies classical rule and obeys the Hamiltonian principle, Lagrangian and Hamilton equations. We verify further the correctness of these conclusions by the results of nonlinear Schrödinger equation under actions of different externally applied potential. From these studies, we see clearly that rules and features of motion of microscopic particle described by nonlinear Schrödinger equation are greatly different from those in the linear Schrödinger equation, they have many classical properties, which are consistent with concept of corpuscles. Thus, we should use the nonlinear Schrödinger equation to describe microscopic particles.  相似文献   

9.
10.
An unusual singular position-dependent-mass particle in an infinite potential well is considered. The corresponding Hamiltonian is mapped through a point-canonical-transformation and an explicit correspondence between the target Hamiltonian and a Pöschl-Teller type reference Hamiltonian is obtained. New ordering ambiguity parametric setting are suggested.  相似文献   

11.
We analyze the properties that manifest Hamiltonian nature of the Schrödinger equation and show that it can be considered as originating from singular Lagrangian action (with two second class constraints presented in the Hamiltonian formulation). It is used to show that any solution of the Schrödinger equation with time independent potential can be presented in the form , where the real field ?(t,xi) is some solution of nonsingular Lagrangian theory being specified below. Preservation of probability turns out to be the energy conservation law for the field ?. After introduction the field into the formalism, its mathematical structure becomes analogous to those of electrodynamics.  相似文献   

12.
A superspace version of the Schrödinger equation with a delta potential is studied using Fourier analysis. An explicit expression for the energy of the single bound state is found as a function of the super-dimension M in case M is smaller than or equal to 1. In the case when there is one commuting and 2n anti-commuting variables also the wave function is given explicitly.  相似文献   

13.
Using the notion of symplectic structure and Weyl (or star) product of non-commutative geometry, we construct unitary representations for the Galilei group and show how to rewrite the Schrödinger equation in phase space. This approach gives rise to a new procedure to derive Wigner functions without the use of the Liouville-von Neumann equation. Applications are presented by deriving the states of linear and nonlinear oscillators in terms of amplitudes of probability in phase space. The notion of coherent states is also discussed in this context.  相似文献   

14.
The Dirac equation is exactly solved for a pseudoscalar linear plus Coulomb-like potential in a two-dimensional world. This sort of potential gives rise to an effective quadratic plus inversely quadratic potential in a Sturm-Liouville problem, regardless the sign of the parameter of the linear potential, in sharp contrast with the Schrödinger case. The generalized Dirac oscillator already analyzed in a previous work is obtained as a particular case.  相似文献   

15.
In this work, we use linear invariants and the dynamical invariant method to obtain exact solutions of the Schrödinger equation for the generalized time-dependent forced harmonic oscillator in terms of solutions of a second order ordinary differential equation that describes the amplitude of the classical unforced damped oscillator. In addition, we construct Gaussian wave packet solutions and calculate the fluctuations in coordinate and momentum as well as the quantum correlations between coordinate and momentum. It is shown that the width of the Gaussian packet, fluctuations and correlations do not depend on the external force. As a particular case, we consider the forced Caldirola-Kanai oscillator.  相似文献   

16.
Exact solution of the Schrödinger equation is derived for underdamped, critically damped, and overdamped harmonic oscillators with a driving force. A unitary operator transforming Hamiltonian into a simple form is introduced. The transformed Hamiltonian, represented in terms of a modified frequency ω, is identical with the Hamiltonian of the standard harmonic oscillator for the underdamped oscillator, with the Hamiltonian of a free particle for the critically damped oscillator, and with the Hamiltonian of a system with a harmonic parabolic potential for the overdamped oscillator. The eigenvalues of underdamped oscillator are discrete while those of the critically damped and the overdamped oscillators are continuous.  相似文献   

17.
In this Letter the approximately analytical scattering state solutions of the l-wave Schrödinger equation for the Manning-Rosen potential are carried out by a proper approximation to the centrifugal term. The normalized radial wave functions of l-wave scattering states are presented and the calculation formula of phase shifts is derived. It is well shown that the poles of the S-matrix in the complex energy plane correspond to bound states for real poles and scattering states for complex poles in the lower half of the energy plane. We consider and verify two special cases: the l=0 and the s-wave Hulthén potential.  相似文献   

18.
Okan Ö  zer 《中国物理快报》2008,25(9):3111-3114
We simply use the relation between the asymptotic iteration method and the Nikiforov-Uvarov method for the analytical solution of the second order linear ordinary differential equations. We apply this relation to study the Schroedinger equation with potentials admitting quasinormal modes. Non-Hermitian PT symmetric potentials have also been studied. Energy eigenvalues in all the cases by the relation are found to be consistent with exact results.  相似文献   

19.
High precision approximate analytic expressions of the ground state energies and wave functions for the arbitrary physical potentials are found by first casting the Schrödinger equation into the nonlinear Riccati form and then solving that nonlinear equation analytically in the first iteration of the quasilinearization method (QLM). In the QLM the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The QLM is iterative but not perturbative and gives stable solutions to nonlinear problems without depending on the existence of a smallness parameter. The choice of zero iteration is based on general features of exact solutions near the boundaries. The approach is illustrated on the examples of the Yukawa, Woods-Saxon and funnel potentials. For the latter potential, solutions describing charmonium, bottonium and topponium are analyzed. Comparison of our approximate analytic expressions for binding energies and wave functions with the exact numerical solutions demonstrates their high accuracy in the wide range of physical parameters. The accuracy ranging between 10−4 and 10−8 for the energies and, correspondingly, 10−2 and 10−4 for the wave functions is reached. The derived formulas enable one to make accurate analytical estimates of how variation of different interactions parameters affects correspondent physical systems.  相似文献   

20.
The general solution of SUSY intertwining relations of first order for two-dimensional Schrödinger operators with position-dependent (effective) mass is built in terms of four arbitrary functions. The procedure of separation of variables for the constructed potentials is demonstrated in general form. The generalization for intertwining of second order is also considered. The general solution for a particular form of intertwining operator is found, its properties—symmetry, irreducibility, and separation of variables—are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号