首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. [Part B]》1982,108(2):127-130
A U(Nc) gauge theory with a global U(Nf) flavor symmetry is investigated in the limit both Nc and Nf large with the ratio ξNf/Nc fixed.  相似文献   

2.
We seek an interpretation of the U(1) part of the electroweak symmetry group in terms of the quantum number B ? L. We show that the electroweak symmetry group, for which U(1) can be interpreted as a local B ? L symmetry, is the left-right symmetry group SU(2)L × SU(2)R × U(1)L+R. The equating of UL+R(1) to UB?L(1) should lead to physical consequences which are not shared by standard gauge theory. B ? L may also help to explain the inversion of quark and lepton mass spectra.  相似文献   

3.
A model of symmetries and gauge interactions relating the electron and muon is considered. The model is based on the UL(1)?UR(1)?RL?RR group where UL(1)?UR(1) denotes the chiral e-μ rotation and RL?RR the chiral reflection of the electron field. The invariance under this group is spontaneously broken by the vacuum expectation values of scalar fields. A zeroth-order vacuum is found for which the zeroth-order electron mass vanishes, while one-loop corrections lead to a finite me ratio. The decay process μ → e + γ is strictly forbidden in this model.  相似文献   

4.
《Physics letters. [Part B]》1988,207(4):482-488
The UL(Nf)×UR(Nf) chiral symmetric version of the Nambu-Jona-Lasinio model is extended by the 't Hooft determinant and bosonized for an arbitrary number of flavours Nf. The resulting effective meson lagrangian is explicitly calculated to leading order in the derivatives for three flavours. The 't Hooft determinant induces flavour mixing of the mesons with diagonal flavour content (π0, η, η′, and their scalar chiral partners δ0, S, ϵ) and pushes up the physical η′-mass. The η-η′ mixing angle is found to be −31°.  相似文献   

5.
In this paper the global symmetry of the Hubbard model on a bipartite lattice is found to be larger than SO(4). The model is one of the most studied many-particle quantum problems, yet except in one dimension it has no exact solution, so that there remain many open questions about its properties. Symmetry plays an important role in physics and often can be used to extract useful information on unsolved non-perturbative quantum problems. Specifically, here it is found that for on-site interaction U ≠ 0 the local SU(2) × SU(2) × U(1) gauge symmetry of the Hubbard model on a bipartite lattice with NaD sites and vanishing transfer integral t = 0 can be lifted to a global [SU(2) × SU(2) × U(1)]/Z22 = SO(3) × SO(3) × U(1) symmetry in the presence of the kinetic-energy hopping term of the Hamiltonian with t > 0. (Examples of a bipartite lattice are the D-dimensional cubic lattices of lattice constant a and edge length L = Naa for which D = 1, 2, 3,... in the number NaD of sites.) The generator of the new found hidden independent charge global U(1) symmetry, which is not related to the ordinary U(1) gauge subgroup of electromagnetism, is one half the rotated-electron number of singly occupied sites operator. Although addition of chemical-potential and magnetic-field operator terms to the model Hamiltonian lowers its symmetry, such terms commute with it. Therefore, its 4NaD energy eigenstates refer to representations of the new found global [SU(2) × SU(2) × U(1)]/Z22 = SO(3) × SO(3) × U(1) symmetry. Consistently, we find that for the Hubbard model on a bipartite lattice the number of independent representations of the group SO(3) × SO(3) × U(1) equals the Hilbert-space dimension 4NaD. It is confirmed elsewhere that the new found symmetry has important physical consequences.  相似文献   

6.
A.A. Osipov  B. Hiller 《Annals of Physics》2006,321(11):2504-2534
The six-quark instanton induced ’t Hooft interaction, which breaks the unwanted UA (1) symmetry of QCD, is a source of perturbative corrections to the leading order result formed by the four-quark forces with the UL (3) × UR (3) chiral symmetry. A detailed quantitative calculation is carried out to bosonize the model by the functional integral method. We concentrate our efforts on finding ways to integrate out the auxiliary bosonic variables. The functional integral over these variables cannot be evaluated exactly. We show that the modified stationary phase approach leads to a resummation within the perturbative series and calculate the integral in the “two-loop” approximation. The result is a correction to the effective mesonic Lagrangian which may be important for the low-energy spectrum and dynamics of the scalar and pseudoscalar nonets.  相似文献   

7.
《Nuclear Physics B》1998,513(3):593-626
We consider the fermion mass spectrum in the strong coupling vortex phase (VXS) of a lattice fermion-scalar model with a global U(1)L × U(1)R, in two dimensions, in the context of a recently proposed two-cutoff lattice formulation. The fermion doublers are made massive by a strong Wilson-Yukawa coupling, but in contrast with the standard formulation of these type of models, in which the light fermion spectrum was found to be vector-like, we find massless fermions with chiral quantum numbers at finite lattice spacing. When the global symmetry is gauged, this model is expected to give rise to a lattice chiral gauge theory.  相似文献   

8.
We discuss the origin of chiral-symmetry breaking in the light-cone representation of QCD. In particular, we show how quark helicity symmetry is spontaneously broken in SU (N) gauge theory with massless quarks if that theory has a condensate of fermion light-cone zero modes. The symmetry breaking appears as induced interactions in an effective light-cone Hamiltonian equation based on a trivial vacuum. The induced interaction is crucial for generating a splitting between pseudoscalar and vector meson masses, which we illustrate with spectrum calculations in some 1 + 1-dimensional reduced models of gauge theory.  相似文献   

9.
The rishon model is studied in the limit gc → 0, α → 0 when its global flavour symmetry is SU(6) × SU(6) × U(1) analogous to six massless flavour QCD. Recently it was shown that the ad hoc breaking SU(6) × SU(6) → SU(3) × SU(3) allows the anomaly constraint to be satisfied. In this paper this is shown to be but one of several successful patterns of chiral symmetry breaking. The condensates required to perform these breakings are fully discussed. A plausibility argument based on single gauge boson exchange is presented which determines the condensate uniquely to be 〈(vLVL)3〉 corresponding to the original breaking above. The same argument applies to QCD, which is argued to differ in its chiral behaviour due to the large intrinsic masses of the quarks. The implications of the above condensate and pattern of chiral symmetry breaking for the rishon model include the prediction of integer charged colour octet fermions, a naive mass formula me = 2mu ? md, new insight into the parity-violating condensate 〈(vLvL)2(vRvR)〉 and the prediction of 52 new pseudos whose masses are estimated.  相似文献   

10.
The previously proposed left-right-symmetric SU(2)L × SU(2)R × U(1) theory permits one of the two neutral gauge particles N1 and N2 to be particularly light (<mW+L) compatible with all neutrin-data and the present atomic parity experiments. Distinguishing features of this theory (with the light mass solution) for e?e+ → μ+μ? and π+π? at PETRA and PEP energies as compared to the SU(2) × U(1) predictions are given.  相似文献   

11.
We study N=1 supersymmetric SU(K+PSU(K) cascading gauge theory of Klebanov et al. (2000) [1] and [2] on R×S3 at zero temperature, and at the origin of the baryonic branch. A radius of S3 sets a compactification scale μ. An interplay between μ and the strong coupling scale Λ of the theory leads to an interesting pattern of quantum phases of the system. For μ?μχSB=1.240467(8)Λ the vacuum state of the theory is chirally symmetric. At μ=μχSB the theory undergoes the first-order transition to a phase with spontaneous breaking of the chiral symmetry. We further demonstrate that the chirally symmetric state of cascading gauge theory becomes perturbatively unstable at scales below μc=0.950634(5)μχSB. Finally, we point out that for μ<1.486402(5)Λ the stress-energy tensor of cascading gauge theory can source inflation of a closed Universe.  相似文献   

12.
We investigate QCD with a large number of massless flavors with the aid of renormalization group flow equations. We determine the critical number of flavors separating the phases with and without chiral symmetry breaking in SU(Nc) gauge theory with many fermion flavors. Our analysis includes all possible fermionic interaction channels in the pointlike four-fermion limit. Constraints from gauge invariance are resolved explicitly and regulator-scheme dependencies are studied. Our findings confirm the existence of an Nf window where the system is asymptotically free in the ultraviolet, but remains massless and chirally invariant on all scales, approaching a conformal fixed point in the infrared. Our prediction for the critical number of flavors of the zero-temperature chiral phase transition in SU(3) is Nfcr=10.0±0.29 (fermion)+1.55-0.63 (gluon), with the errors arising from approximations in the fermionic and gluonic sectors, respectively. PACS 11.10.Hi, 11.15.Tk, 11.30.Rd  相似文献   

13.
Instantons and anti-instantons can profoundly influence the structure of a non-Abelian gauge theory involving N flavors of massless quarks. Interactions of the quarks with these pseudoparticles can spontaneously generate a quark mass, break the theory's SU(N) × SU(N) chiral symmetry and bind quark-antiquark pairs to form N2 ? 1 Goldstone bosons. If the spontaneously generated quark mass is small, multipseudoparticle configurations can be treated in a dilute gas approximation.  相似文献   

14.
By considering the symmetries associated with baryon number and lepton number conservation as gauge symmetries, the underlying gauge symmetry of weak electromagnetic interactions is shown to beSU(2) L ×U(1)×U(1)Baryon×U(1)Lepton. If right-handed currents exist on a par with the observed left-handed ones, then the full symmetry of electroweak interactions that emerges isSU(2)L×SU(2)R×U(1)Baryon×U(1)Lepton. These symmetries offer a rich spectrum of massive neutral gauge bosons, one of which is the massive neutral boson of the standardSU(2) L ×U(1) Y model.  相似文献   

15.
The effective potential is calculated for a two dimensionalU(N) gauge theory with scalar quarks to leading order in the 1/N expansion. If there is noφ 4 interaction present, the potential is unbounded from below. If theφ 4 interaction is present, the potential is bounded from below and there is an unbroken and a spontaneously broken symmetry phase. The bound state spectrum of the unbroken phase is very similar to that of anU(N) gauge theory without theφ 4 term.  相似文献   

16.
We discuss the possibility of obtaining the observed pattern of quark masses and mixings as a consequence of radiative corrections, gauge invariance and particle content of the theory. We do not allow any kind of additional symmetry, such as family and discrete symmetries. A model based on the gauge groupSU(3)×SU(2) L ×SU(2) R ×U(1) B?L is considered. It turns out that the correct values of quark masses can be reasonably reproduced. The typical strength of the flavour changing couplings of theZ 0-boson is however at least one order of magnitude above the experimental upper bounds. A comparison is made with a model in which an additional discrete symmetry is present. In this case flavour changing phenomena can be kept under control.  相似文献   

17.
We present the possible mixing effects associated with the low-energy limit of a Standard-Model extension by two abelian gauge groups U1(1)×U2(1). We derive general formulae and approximate expressions that connect the gauge eigenstates to the mass eigenstates. Applications using the well-studied groups UB(1), U(1)BL, U(1)LαLβ (Lα being lepton flavor numbers), and UDM(1) (a symmetry acting only on the dark matter sector) are discussed briefly.  相似文献   

18.
We have constructed the first “realistic candidate” preon model with low composite scale satisfying complementarity between the Higgs and confining phases. The model is based onSU(4) metacolor and predicts four generations of ordinary quarks and leptons together with heavy neutrinos at the level of the standard gauge groupSU(3) c ×SU(2) L ×U(1) Y . There are no exotic massless fermions. The global family group isSU(2)×U(1).  相似文献   

19.
We explore the phenomenological structure of E 6-inspired grand unified group with the gauge group SU(3)c×SU(2)L×U(1)Y×U(1), the emphasis being laid upon its implications for Higgs boson observation. In particular, we discuss the probability for the mass eigenstate Z 2 to decay into a Higgs particle and a bound state composed of heavy quarks. Constraints on and relations between the Z 2 and Higgs masses are presented.  相似文献   

20.
We extend the supersymmetric, confining theory of weak interactions to a left-right symmetric model. This model is based on the gauge group SU(M)SC×SU(2)R×SU(2)L×SU(3)c×U(1) and is more natural as far as supersymmetry breaking is concerned. Supersymmetry protects chiral symmetries from spontaneous breakdown and allows a solution to the strong CP problem. This model can accommodate at most three generations of quarks and leptons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号