首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In papers [Jafarizadehn and Salimi, Ann. Phys. 322, 1005 (2007) and J. Phys. A: Math. Gen. 39, 13295 (2006)], the amplitudes of continuous-time quantum walk (CTQW) on graphs possessing quantum decomposition (QD graphs) have been calculated by a new method based on spectral distribution associated with their adjacency matrix. Here in this paper, it is shown that the CTQW on any arbitrary graph can be investigated by spectral analysis method, simply by using Krylov subspace-Lanczos algorithm to generate orthonormal bases of Hilbert space of quantum walk isomorphic to orthogonal polynomials. Also new type of graphs possessing generalized quantum decomposition (GQD) have been introduced, where this is achieved simply by relaxing some of the constrains imposed on QD graphs and it is shown that both in QD and GQD graphs, the unit vectors of strata are identical with the orthonormal basis produced by Lanczos algorithm. Moreover, it is shown that probability amplitude of observing the walk at a given vertex is proportional to its coefficient in the corresponding unit vector of its stratum, and it can be written in terms of the amplitude of its stratum. The capability of Lanczos-based algorithm for evaluation of CTQW on graphs (GQD or non-QD types), has been tested by calculating the probability amplitudes of quantum walk on some interesting finite (infinite) graph of GQD type and finite (infinite) path graph of non-GQD type, where the asymptotic behavior of the probability amplitudes at the limit of the large number of vertices, are in agreement with those of central limit theorem of [Phys. Rev. E 72, 026113 (2005)]. At the end, some applications of the method such as implementation of quantum search algorithms, calculating the resistance between two nodes in regular networks and applications in solid state and condensed matter physics, have been discussed, where in all of them, the Lanczos algorithm, reduces the Hilbert space to some smaller subspaces and the problem is investigated in the subspace with maximal dimension.  相似文献   

2.
S. Salimi 《Annals of Physics》2009,324(6):1185-261
In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K2 graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.  相似文献   

3.
The micro-canonical, canonical, and grand canonical ensembles of walks defined in finite connected undirected graphs are considered in the thermodynamic limit of infinite walk length. As infinitely long paths are extremely sensitive to structural irregularities and defects, their properties are used to describe the degree of structural imbalance, anisotropy, and navigability in finite graphs. For the first time, we introduce entropic force and pressure describing the effect of graph defects on mobility patterns associated with the very long walks in finite graphs; navigation in graphs and navigability to the nodes by the different types of ergodic walks; as well as node’s fugacity in the course of prospective network expansion or shrinking.  相似文献   

4.
5.
Current methods used to devise sets of Hermite interpolation polynomials of minimal order that ensure C(n) continuity across triangular element boundaries in two dimensions are not readily extensible to higher dimensions. The extension of such methods is especially difficult when the number of degrees of freedom afforded by data at points is different from the number of degrees of freedom determined by the coefficients of a complete polynomial basis to a particular order. This work introduces a formalism based on group representation theory that can accomplish this task in general. The method is introduced through the derivation of C(1) continuous Hermite polynomials that interpolate data at the three vertices of an equilateral triangular element. These interpolation polynomials are reported here for the first time. The polynomials derived here are compared to the standard polynomials defined in a right triangle by using the two sets of polynomials to solve the Laplace equation over finite elements. The methodology presented here is of use in higher dimensional elements when the complete polynomial degrees of freedom exceed the total C(n) degrees of freedom at the nodes.  相似文献   

6.
范洪义  楼森岳  潘孝胤  笪诚 《物理学报》2013,62(24):240301-240301
提出量子力学算符Hermite多项式方法,即将若干常用的特殊函数的宗量由普通数变为算符,并用它来发现涉及Hermite多项式(单变数和双变数)的二项式定理和涉及Laguerre多项式的负二项式定理,它们在计算若干量子光场的物理性质时有实质性的应用. 该方法不但具有简捷的优点,而且能导出很多新的算符恒等式,成为发展数学物理理论的一个重要分支. 关键词: 量子力学 Hermite多项式 二项式定理 Laguerre多项式  相似文献   

7.
This paper is concerned with the continuous-time quantum walk on ℤ, ℤ d , and infinite homogeneous trees. By using the generating function method, we compute the limit of the average probability distribution for the general isotropic walk on ℤ, and for nearest-neighbor walks on ℤ d and infinite homogeneous trees. In addition, we compute the asymptotic approximation for the probability of the return to zero at time t in all these cases.  相似文献   

8.
A large number of physical quantities (thermodynamic and correlation functions, scattering amplitudes, intermolecular potentials, etc. ...) can be expressed as sums of an infinite number of multiple integrals of the following type: $$\Gamma \left( {x_1 ,. . . , x_n } \right) = \int {\prod {f_L \left( {x_{i,} x_j } \right)dx_{n + 1} . . . dx_{n + k} } }$$ These are called Mayer graphs in statistical mechanics, Feynman graphs in quantum field theory, and multicenter integrals in quantum chemistry. We call themn-graphs here. In a preceding note [Physics Letters 62A:295 (1977)], we have proposed a new estimation method which provides upper bounds for arbitraryn-graphs. This article is devoted to developing in detail the foundations of this method. As a first application, we prove that all virial coefficients of polar systems are finite. More generally, we show on some examples that our estimation method can givefinite upper bounds forn-graphs occurring in the perturbative developments of thermodynamic functions of neutral, polar, and ionized gases and of Green's functions of Euclidean quantum field theories (thus improving Weinberg's theorem), as also in variational approximations of intermolecular potentials. Our estimation method is based on the Hölder inequality which is an improvement over the mean value estimation method, employed by Riddell, Uhlenbeck, and Groeneveld, except for the hard-sphere gas, where both methods coincide. The method is applied so far only to individual graphs and not to thermodynamic functions.  相似文献   

9.
Universality for the Distance in Finite Variance Random Graphs   总被引:1,自引:1,他引:0  
We generalize the asymptotic behavior of the graph distance between two uniformly chosen nodes in the configuration model to a wide class of random graphs. Among others, this class contains the Poissonian random graph, the expected degree random graph and the generalized random graph (including the classical Erdős-Rényi graph). In the paper we assign to each node a deterministic capacity and the probability that there exists an edge between a pair of nodes is equal to a function of the product of the capacities of the pair divided by the total capacity of all the nodes. We consider capacities which are such that the degrees of a node have uniformly bounded moments of order strictly larger than two, so that, in particular, the degrees have finite variance. We prove that the graph distance grows like log  ν N, where the ν depends on the capacities and N denotes the size of the graph. In addition, the random fluctuations around this asymptotic mean log  ν N are shown to be tight. We also consider the case where the capacities are independent copies of a positive random Λ with , for some constant c and τ>3, again resulting in graphs where the degrees have finite variance. The method of proof of these results is to couple each member of the class to the Poissonian random graph, for which we then give the complete proof by adapting the arguments of van der Hofstad et al. (Random Struct. Algorithms 27(2):76–123, 2005).  相似文献   

10.
We consider the Bernoulli bond percolation process (with parameter p) on infinite graphs and we give a general criterion for bounded degree graphs to exhibit a non-trivial percolation threshold based either on a single isoperimetric inequality if the graph has a bi-infinite geodesic, or two isoperimetric inequalities if the graph has not a bi-infinite geodesic. This new criterion extends previous criteria and brings together a large class of amenable graphs (such as regular lattices) and non-amenable graphs (such trees). We also study the finite connectivity in graphs satisfying the new general criterion and show that graphs in this class with a bi-infinite geodesic always have finite connectivity functions with exponential decay when p is sufficiently close to one. On the other hand, we show that there are graphs in the same class with no bi-infinite geodesic for which the finite connectivity decays sub-exponentially (down to polynomially) in the highly supercritical phase even for p arbitrarily close to one.  相似文献   

11.
Ribbon graphs embedded on a Riemann surface provide a useful way to describe the double-line Feynman diagrams of large N   computations and a variety of other QFT correlator and scattering amplitude calculations, e.g. in MHV rules for scattering amplitudes, as well as in ordinary QED. Their counting is a special case of the counting of bi-partite embedded graphs. We review and extend relevant mathematical literature and present results on the counting of some infinite classes of bi-partite graphs. Permutation groups and representations as well as double cosets and quotients of graphs are useful mathematical tools. The counting results are refined according to data of physical relevance, such as the structure of the vertices, faces and genus of the embedded graph. These counting problems can be expressed in terms of observables in three-dimensional topological field theory with SdSd gauge group which gives them a topological membrane interpretation.  相似文献   

12.
Let Alt n be the vector space of all alternating n × n complex matrices, on which the complex general linear group GL n acts by \({x \mapsto gxg^t}\). The aim of this paper is to show that Pfaffian of a certain matrix whose entries are multiplication operators or derivations acting on polynomials on Alt n provides a generating function for the GL n -invariant differential operators that play an essential role in the skew Capelli identity, with coefficients the Hermite polynomials.  相似文献   

13.
Skew orthogonal polynomials arise in the calculation of the n-point distribution function for the eigenvalues of ensembles of random matrices with orthogonal or symplectic symmetry. In particular, the distribution functions are completely determined by a certain sum involving the skew orthogonal polynomials. In the case that the eigenvalue probability density function involves a classical weight function, explicit formulas for the skew orthogonal polynomials are given in terms of related orthogonal polynomials, and the structure is used to give a closed-form expression for the sum. This theory treates all classical cases on an equal footing, giving formulas applicable at once to the Hermite, Laguerre, and Jacobi cases.  相似文献   

14.
The spans of ann-step random walk on a simple cubic lattice are the sides of the smallest rectangular box, with sides parallel to the coordinate axes, that contains the random walk. Daniels first developed the theory in outline and derived results for the simple random walk on a line. We show that the development of a more general asymptotic theory is facilitated by introducing the spectral representation of step probabilities. This allows us to consider the probability density for spans of random walks in which all moments of single steps may be infinite. The theory can also be extended to continuous-time random walks. We also show that the use of Abelian summation simplifies calculation of the moments. In particular we derive expressions for the span distributions of random walks (in one dimension) with single step transition probabilities of the formP(j) 1/j 1+, where 0<<2. We also derive results for continuous-time random walks in which the expected time between steps may be infinite.  相似文献   

15.
The first theoretical investigation of the amplitudes of the narrow band current oscillations generated by sliding charge density waves is given using the stochastic classical model with a current noise source. In contrast to the classical model without fluctuations, the power spectrum S(ω) of the current-current correlation function has finite peaks S2n and non- vanishing line widths Γn near ω = nωosc where ωosc is the fundamental frequency of the current oscillations. For weak current noise, analytical expressions for sn and Γn are given which agree with the exact numerical treatment of S(ω) using the Fokker-Planck approach. The results are in accord with the observed asymptotic decrease of the fundamental amplitude s1 with increasing d.c. bias. They also confirm the validity of the weak noise limit for sliding charge density waves.  相似文献   

16.
We present a detailed comparison of the motion of a classical and of a quantum particle in the presence of trapping sites, within the framework of continuous-time classical and quantum random walk. The main emphasis is on the qualitative differences in the temporal behavior of the survival probabilities of both kinds of particles. As a general rule, static traps are far less efficient to absorb quantum particles than classical ones. Several lattice geometries are successively considered: an infinite chain with a single trap, a finite ring with a single trap, a finite ring with several traps, and an infinite chain and a higher-dimensional lattice with a random distribution of traps with a given density. For the latter disordered systems, the classical and the quantum survival probabilities obey a stretched exponential asymptotic decay, albeit with different exponents. These results confirm earlier predictions, and the corresponding amplitudes are evaluated. In the one-dimensional geometry of the infinite chain, we obtain a full analytical prediction for the amplitude of the quantum problem, including its dependence on the trap density and strength.  相似文献   

17.
《Nuclear Physics B》1986,278(4):790-818
The Wick-rotated, light-cone gauge U(n) Veneziano model of open and closed strings is examined in the limit as n → ∞, with g02n fixed. The amplitudes in both the “pomeron sector” (whose graphs are cylinders with holes punched out) and the “reggeon sector” (whose graphs are rectangles with holes punched out) are regularized using the lattice method of Giles and Thorn, as well as an alternative method. It is found that this string model is trivial. When the cut-off is removed, the pomeron and reggeon sector spectra are those of the free closed and open strings, respectively. This result is independent of the choice of g02n. A possible extension to fermionic strings, and the implications for large-n gauge theories are briefly discussed.  相似文献   

18.
We describe a family of the rational solutions of the Zakharov—Schabat equations. This family is characterized by extremely simple superposition principle, following directly from the Darboux-invariance of the Zakharov-Schabat equations proved in the works [1, 4]. Particularly we present an infinite sequence of polynomials P n (x, y, t, t 4, ..., t m), m≤n, so that the formula $$u = 2\partial _x^2 Log\left( {\sum\limits_{i = 1}^N {c_i P_i } } \right)$$ where c i are the arbitrary constants, represents some class of solutions of the Kadomtcev—Petviashvily equation. The paramters t 4, ..., t K represent the explicit action of the commuting flows, related with the Zakharov—Schabat operators of the higher order, on the solutions of the K—P equation, and can be fixed independently in each P i. The polynomials P n are closely related with the second Waring formular well known in algebra. This relation imposes some specific constraints on the motion of the N particle Moser—Calogero system generated by P n.  相似文献   

19.
A nonlinear model of the quantum harmonic oscillator on two-dimensional space of constant curvature is exactly solved. This model depends on a parameter λ that is related with the curvature of the space. First, the relation with other approaches is discussed and then the classical system is quantized by analyzing the symmetries of the metric (Killing vectors), obtaining a λ-dependent invariant measure dμλ and expressing the Hamiltonian as a function of the Noether momenta. In the second part, the quantum superintegrability of the Hamiltonian and the multiple separability of the Schrödinger equation is studied. Two λ-dependent Sturm-Liouville problems, related with two different λ-deformations of the Hermite equation, are obtained. This leads to the study of two λ-dependent families of orthogonal polynomials both related with the Hermite polynomials. Finally the wave functions Ψm,n and the energies Em,n of the bound states are exactly obtained in both the sphere S2 and the hyperbolic plane H2.  相似文献   

20.
Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discrete-time random walks, the two types of quantum walk appear fundamentally different, owing to the need for extra degrees of freedom in the discrete-time case. In this article, I describe a precise correspondence between continuous- and discrete- time quantum walks on arbitrary graphs. Using this correspondence, I show that continuous-time quantum walk can be obtained as an appropriate limit of discrete-time quantum walks. The correspondence also leads to a new technique for simulating Hamiltonian dynamics, giving efficient simulations even in cases where the Hamiltonian is not sparse. The complexity of the simulation is linear in the total evolution time, an improvement over simulations based on high-order approximations of the Lie product formula. As applications, I describe a continuous-time quantum walk algorithm for element distinctness and show how to optimally simulate continuous-time query algorithms of a certain form in the conventional quantum query model. Finally, I discuss limitations of the method for simulating Hamiltonians with negative matrix elements, and present two problems that motivate attempting to circumvent these limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号