首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold-coated magnetic nanoparticles were synthesized with size ranging from 15 to 40 nm using sodium citrates as the reducing agent. Oxidized magnetites (Fe3O4) fabricated by co-precipitation of Fe2+ and Fe3+ in strong alkaline solution were used as magnetic cores. The structures of gold (Au) shell and magnetic core (Au–Fe) were studied by transmission electron microscopy (TEM) image and energy dispersive spectroscopy (EDS) spectrum. Results from high-resolution X-ray diffraction (HR XRD) show that the Au–Fe oxide nanoparticles have a face-centered cubic shape with the crystalline faces of {1 1 1}. The Au-coated magnetic nanoparticles exhibited a surface plasmon resonance peak at 528 nm. The nanoparticles are well dispersed in distilled water. A 3000 G permanent magnet was successfully used for the separation of the functionalized nanoparticles. Magnetic properties of the nanoparticles were determined by magnetic force microscope (MFM) in nanometric resolution and vibrating sample magnetometer (VSM). Magnetic separation of biological molecules using Au-coated magnetic oxide composite nanoparticles was examined after attachment of protein immunoglobulin G (IgG) through electrostatic interactions. Using this method, separation was achieved with a maximum yield of 35% at an IgG concentration of 400 ng/ml.  相似文献   

2.
Rhenium sulfide nanoparticles are associated with magnetic iron oxide through coprecipitation of iron salts with tetramethylammonium hydroxide. Sizes of the formed magnetic rhenium sulfide composite particles are in the range 5.5-12.5 nm. X-ray diffraction and energy-dispersive analysis of X-rays spectra demonstrate the coexistence of Fe3O4 and ReS2 in the composite particle, which confirm the formation of the magnetic rhenium sulfide composite nanoparticles. The association of rhenium sulfide with iron oxide not only keeps electronic state and composition of the rhenium sulfide nanoparticles, but also introduces magnetism with the level of 24.1 emu g-1 at 14 kOe. Surface modification with monocarboxyl-terminated poly(ethylene glycol) (MPEG-COOH) has the role of deaggregating the composite nanoparticles to be with average hydrodynamic size of 27.3 nm and improving the dispersion and the stability of the composite nanoparticles in water.  相似文献   

3.
Cobalt ferrite nanoparticles were synthesized by the chemical co-precipitation, normal micelles and reverse micelles methods of iron and cobalt chlorides. X-ray diffraction analysis, Fourier Transform Infrared (FTIR) and Vibrating Sample Magnetometer were carried out at room temperature to study the structural and magnetic properties. X-ray patterns revealed the production of a broad single cubic phase with the average particle sizes of ∼12 nm, 5 nm and 8 nm for co-precipitation, normal micelles and reverse micelles methods, respectively. The FTIR measurements between 400 and 4000 cm−1 confirmed the intrinsic cation vibrations of spinel structure for each one of the three methods. Moreover, the average particle sizes were lower than the single domain size (128 nm) and higher than the super-paramagnetic size (2–3 nm) at room temperature. The results revealed that the magnetic properties depend on the particle size and cation distribution, whereas the role of particle size is more significant.  相似文献   

4.
Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material that is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (γ-Fe2O3) nanoparticles 7-10 nm in diameter. The material is homogenous at very small length scales (<100 nm) and can be crosslinked to form a flexible magnetic material, which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 to 50 wt% without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings.  相似文献   

5.
Mechanism of structure formation in bidispersed colloids is important for its physical and optical properties. It is microscopically observed that the mechanism of chain formation in magnetic nanofluid based magnetorheological (MR) fluid is quite different from that in the conventional MR fluid. Under the application of magnetic field the magnetic nanoparticles are filled inside the structural microcavities formed due to the association of large magnetic particles, and some of the magnetic nanoparticles are attached at the end of the chains formed by the large particles. The dipolar energy of the large particles in a magnetic nanofluid matrix becomes effective magnetic permeability (μeff) times smaller than that of the neutral medium. Inclusion of magnetic nanoparticles (∼10 nm) with large magnetic particles (∼3-5 μm) restricts the aggregation of large particles, which causes the field induced phase separation in MR fluids. Hence, nanofluid based MR fluids are more stable than conventional MR fluids, which subsequently increase their application potentiality.  相似文献   

6.
Self-forming core/shell nanoparticles of magnetic metal/oxide with crystalline grain size of less than 40 nm were synthesized. The nanoparticles were highly concentrated in an insulating matrix to fabricate a nanocomposite, whose magnetic properties were investigated. The crystalline grain size of the nanoparticles strongly influenced the magnetic anisotropy field, magnetic coercivity, relative permeability, and loss factor (tan δ=μ″/μ′) at high frequency. The packing ratio of the magnetic metallic phase in the nanocomposite also influenced those properties. High permeability with low tan δ of less than 1.5% at up to 1 GHz was obtained in the case of the nanoparticles with crystalline grain size of around 15 nm with large packing ratio of the nanoparticles.  相似文献   

7.
The magnetization of iron oxide, nickel and cobalt ferrite nanoparticles was successfully measured by using a modular magnetometer. The magnetometer was built by combining stand-alone equipments usually available at most laboratories such as a Gaussmeter, an electromagnet, a current source and a linear actuator. The magnetic moment sensitivity attained was about 10−6 Am2 and the results were checked against measurements made on commercial VSM and SQUID magnetometers showing few percent errors.  相似文献   

8.
Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at a depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nanoparticles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm3 volume optimal Halbach design yields a 5× greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤1 T), size (≤2000 cm3), and number of elements (≤36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤5°), thus yielding practical designs to improve magnetic drug targeting treatment depths.  相似文献   

9.
We report the study of nonequilibrium magnetic behavior of air stable zero valent iron nanoparticles synthesized in presence of N-cetyl-N,N,N-trimethyl ammonium bromide chelating agent. X-ray photoelectron spectroscopy study has suggested the presence of iron oxides on nZVI surfaces. Zero-field-cooled and field-cooled magnetization measurements have been carried out at 20–300 K and 100 Oe. For field-cooled measurements with 1 h stops at 200, 100 and 50 K when compared with the warming cycle, we found the signature of magnetic memory effect. A study of magnetic relaxation at the same temperatures shows the existence of two relaxation times.  相似文献   

10.
Magnetic protein microspheres with core-shell structure were prepared through a novel approach based on the sonochemical method and the emulsion solvent evaporation method. The microspheres are composed of the oleic acid and undecylenic acid modified Fe3O4 cores and coated with globular bovine serum albumin (BSA). Under an optimized condition, up to 57.8 wt% of approximately 10 nm superparamagnetic Fe3O4 nanoparticles could be uniformly encapsulated into the BSA microspheres with the diameter of approximately 160 nm and the high saturation magnetization of 38.5 emu/g, besides of the abundant functional groups. The possible formation mechanism of magnetic microspheres was discussed in detail.  相似文献   

11.
Superparamagnetic and monodispersed aqueous ferrofluids of Zn substituted magnetite nanoparticles (ZnxFe3−xO4, x=0, 0.25, 0.3, 0.37 and 0.4) were synthesized via hydrothermal-reduction route in the presence of citric acid, which is a facile, low energy and environmental friendly method. The synthesized nanoparticles were characterized by X ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, scanning and transmission electron microscopy (SEM and TEM) and the dynamic light scattering (DLS) method. The results showed that a certain amount of citric acid was required to obtain single phase Zn substituted magnetite nanoparticles. Citric acid acted as a modulator and reducing agent in the formation of spinel structure and controlled nanoparticle size and crystallinity. Mean particle sizes of the prepared nanoparticles were around 10 nm. The results that are obtained from XRD, magnetic and power loss measurements showed that the crystallinity, saturation magnetization (MS) and loss power of the synthesized ferrofluids were all influenced by the substitution of Zn in the structure of magnetite. The Zn substituted magnetite nanoparticles obtained by this route showed a good stability in aqueous medium (pH 7) and hydrodynamic sizes below 100 nm and polydispersity indexes below 0.2. The calculated intrinsic loss power (ILP) for the sample x=0.3 (e.g. 2.36 nH m2/kg) was comparable to ILP of commercial ferrofluids with similar hydrodynamic sizes.  相似文献   

12.
For a variety of magnetically based biomedical applications, it is advantageous to use sedimentation stable suspensions of relatively large (d>20 nm) magnetic core-shell nanoparticles. Water-based suspensions of multicore nanoparticles were prepared by coating of the particles (synthesized by means of a modified alkaline precipitation method) with a carboxymethyldextran shell. The resulting ferrofluids were structurally and magnetically characterized. It was found that these fluids show a specific heating power of about 60 W/g (f=400 kHz, H=10 kA/m). This value was increased up to 330 W/g by a simple fractionation method based on centrifugation. Finally, the cellular uptake of the multicore nanoparticles was demonstrated.  相似文献   

13.
We report on the magnetic hyperthermia properties of chemically synthesized ferromagnetic 11 and 16 nm Fe(0) nanoparticles of cubic shape displaying the saturation magnetization of bulk iron. The specific absorption rate measured on 16 nm nanocubes is 1690±160 W/g at 300 kHz and 66 mT. This corresponds to specific losses-per-cycle of 5.6 mJ/g, largely exceeding the ones reported in other systems. A way to quantify the degree of optimization of any system with respect to hyperthermia applications is proposed. Applied here, this method shows that our nanoparticles are not fully optimized, probably due to the strong influence of magnetic interactions on their magnetic response. Once protected from oxidation and further optimized, such nano-objects could constitute efficient magnetic cores for biomedical applications requiring very large heating power.  相似文献   

14.
Nanostructured cobalt is one of the key elements in catalysis and therapeutic drug delivery. To design and prepare nanosize-controllable cobalt, a better understanding of its growth mechanism is essential. Growth of Co nanoparticles encapsulated in carbon-shell (Co@C) during temperature-programmed carbonization of the Co2+-β-cyclodextrin (CD) complex at 363–573 K was, therefore, studied by in situ synchrotron small-angel X-ray scattering and X-ray absorption near edge structure spectroscopy. The carbon-shell having a thickness of about 2 nm can prevent the core Co from being aggregated and oxidized. A relatively slow reduction of Co(II) to Co is observed at 393–423 K (stage I) prior to a particle growth transition-state possessing Co of 2.2 nm in diameter at 423–483 K. At 483–513 K (stage II), an increasing Co(II) reduction rate coupled with a rapid fusion and coalescence of Co nanoparticles is found. The average growth rates of Co at stages I and II are about 27 and 98 atoms/min, respectively. The most-probable particle diameter of the ripened Co is 5.9 nm. The carbon-shell can be removed by steam reforming to yield the Co nanoparticles. This work also exemplifies the possible temperature-controllable growth of Co@C, especially in the Co size range of 2–6 nm in diameter.  相似文献   

15.
This work presents a systematic investigation on the structural and magnetic properties of Co1−xZnxFe2O4 (0.5<x<0.75) nanoparticles synthesized by the chemical co-precipitation method. The X-ray diffraction analysis, the Fourier Transform Infrared (FTIR) and the Vibrating Sample Magnetometer were carried out at room temperature to study the micro-structural and magnetic properties. The X-ray measurements revealed the production of a broad single cubic phase with the crystallite size within the range of 6–10 nm. The FTIR measurements between 400 and 4000 cm−1 confirmed the intrinsic cation vibrations of the spinel structure. The magnetic measurements show that the saturation magnetization and coercivity decrease by increasing the zinc content. Furthermore, the results reveal that the sample with a chemical composition of Co0.3Zn0.7Fe2O4 exhibits the super-paramagnetic behavior and the Curie point of 97 °C.  相似文献   

16.
The influence of the oleic acid surface coating on Fe3O4 and NiFe2O4 nanoparticles on their magnetic and calorimetric characterization was investigated. Fe3O4 nanoparticles (particle sizes of 15-20 and 20-30 nm) and NiFe2O4 nanoparticles (particle sizes of 20-30 nm) were dispersed in oleic acid. The surface coating resulted in a decrease in the dipole-dipole interaction between the particles, which in turn affected the coercivity and heat dissipation of the nanoparticles. The coercivity of the oleic-acid-coated nanoparticles was found to be lower than that of the uncoated nanoparticles. The temperature rise in the oleic-acid-coated nanoparticles was greater than that of the uncoated nanoparticles; this temperature rise was associated with the relaxation losses. The viscosity dependence on the self-heating temperature of Fe3O4 nanoparticles (15-20 and 20-30 nm) under an ac magnetic field was measured. The temperature rise for both the Fe3O4 nanoparticles (15-20 and 20-30 nm) exhibited a strong dependence on viscosity at each magnetic field frequency, and the contribution of Brownian relaxation loss to the temperature rise was revealed. Moreover, an in vitro cytotoxicity test of Fe3O4 and NiFe2O4 was performed using human cervical carcinoma cells (HeLa), and the cytotoxicity of NiFe2O4 nanoparticles was compared to that of Fe3O4 nanoparticles.  相似文献   

17.
Fe3O4 magnetic nanoparticles were prepared by co-precipitation from FeSO4·7H2O and FeCl3·6H2O aqueous solutions using NaOH as precipitating reagent. The nanoparticles have an average size of 12 nm and exhibit superparamagnetism at room temperature. The nanoparticles were used to prepare a water-based magnetic fluid using oleic acid and Tween 80 as surfactants. The stability and magnetic properties of the magnetic fluid were characterized by Gouy magnetic balance. The experimental results imply that the hydrophilic block of Tween 80 can make the Fe3O4 nanoparticles suspending in water stable even after dilution and autoclaving. The magnetic fluid demonstrates excellent stability and fast magneto-temperature response, which can be used both in magnetic resonance imaging and magnetic fluid hyperthermia.  相似文献   

18.
The relative contributions of Néel and Brownian relaxations on magnetic heat dissipation were studied by investigating the physical, magnetic and heating characteristics of magnetite nanoparticle suspensions with average diameters of 12.5 and 15.7 nm. Heating characteristics depended on the dispersion states of particles. The specific absorption rates (SAR) dropped by 27% for the 12.5 nm particles to 16.8×10−9 W g−1 Oe−2 Hz−1 and by 67% for the 15.7 nm particles to 9.69×10−9 W g−1 Oe−2 Hz−1, when the particle rotation was suppressed by dispersing magnetite nanoparticles in hydro-gel.  相似文献   

19.
In this work the magnetic and structural properties of granular Ni(SiO2) films are studied by means of FORCs diagrams and microscopy. Transmission electron microscopy images show that the sample is composed of a fine dispersion of Ni nanoparticles with 3.7 nm in average sizes. Magnetic measurements as function of temperature show that the nanoparticles are superparamagnetic at room temperature and are blocked at 5 K. The FORCs diagrams obtained below the blocking temperature allow us to determine the average size of the nanoparticles and the distribution of sizes in a very good agreement with TEM images.  相似文献   

20.
Superparamagnetic nanoparticles functionalized with carboxymethyl dextran (CM-dextran) were synthesized by a two-step method. First, the magnetic nanoparticles (MNPs) coated with dextran (Mw ≈ 20000) were prepared by co-precipitation of Fe2+ and Fe3+ ions. Then, dextran on the surface of MNPs reacted with monochloroacetic acid (MCA) in alkaline condition. The influences of temperature and reactant concentration on the amount of -COOH on the surface of nanoparticles were systematically studied. The obtained MNPs coated with CM-dextran were stable over the entire range of pH and NaCl concentration. The MRI experiment indicated that the CM-dextran MNPs could potentially be used as MRI contrast agents for magnetic resonance molecular imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号