首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The density profiles in a fluid interacting with the two identical solid walls of a closed long slit were calculated for wide ranges of the number of fluid molecules in the slit and temperature by employing density functional theory in the local density approximation. Two potentials, the van der Waals and the Lennard-Jones, were considered for the fluid-fluid and the fluid-walls interactions. It was shown that the density profile corresponding to the stable state of the fluid considerably changes its shape with increasing average density (rhoav) of the fluid inside the slit, the details of changes being dependent on the selected potential. For the van der Waals potential, a single temperature-dependent critical value rhosb of rhoav was identified, such that for rhoav < rhosb the stable state of the system is described by a symmetric density profile, whereas for rhoav >/= rhosb it is described by an asymmetric one. This transition constitutes a spontaneous symmetry breaking of the fluid density distribution in a closed slit with identical walls. For rhoav >/= rhosb, a metastable state, described by a symmetric density profile, was present in addition to the stable asymmetric one. The shape of the symmetric profile changed suddenly at a value rhoc-h > rhosb of the average density, the density rhoc-h being almost independent of temperature. Because of the shapes of the profiles before and after the transformation, this transition was named cup-hill transformation. At the transition point, the density of the fluid near the walls decreased suddenly from a liquid-like value becoming comparable with the density of a gaseous phase, and the density in the middle of the slit increased suddenly from a gaseous-like value becoming on the order of the density of a liquid phase. For the Lennard-Jones potential, there are two temperature-dependent critical densities, rhosb1 and rhosb2, such that the stable density profile is asymmetric (symmetry breaking occurs) for rhosb1 相似文献   

2.
In this paper we consider the adsorption of argon on the surface of graphitized thermal carbon black and in slit pores at temperatures ranging from subcritical to supercritical conditions by the method of grand canonical Monte Carlo simulation. Attention is paid to the variation of the adsorbed density when the temperature crosses the critical point. The behavior of the adsorbed density versus pressure (bulk density) shows interesting behavior at temperatures in the vicinity of and those above the critical point and also at extremely high pressures. Isotherms at temperatures greater than the critical temperature exhibit a clear maximum, and near the critical temperature this maximum is a very sharp spike. Under the supercritical conditions and very high pressure the excess of adsorbed density decreases towards zero value for a graphite surface, while for slit pores negative excess density is possible at extremely high pressures. For imperfect pores (defined as pores that cannot accommodate an integral number of parallel layers under moderate conditions) the pressure at which the excess pore density becomes negative is less than that for perfect pores, and this is due to the packing effect in those imperfect pores. However, at extremely high pressure molecules can be packed in parallel layers once chemical potential is great enough to overcome the repulsions among adsorbed molecules.  相似文献   

3.
The symmetry breaking (SB) of the fluid density distribution (FDD) in closed nanoslits between two identical parallel solid walls described by Berim and Ruckenstein [J. Chem. Phys. 128, 024704 (2008)] for a single component fluid is examined for binary mixtures on the basis of a nonlocal canonical ensemble density functional theory. As in Monte Carlo simulations, the periodicity of the FDD in one of the lateral (parallel to the wall surfaces) directions, denoted as the x direction, was assumed. In the other lateral direction, y direction, the FDD was considered to be uniform. The molecules of the two components have different diameters and their Lennard-Jones interaction potentials have different energy parameters. It was found that depending on the average fluid density in the slit and mixture composition, SB can occur for both or none of the components but never for only one of them. In the direction perpendicular to the walls (h direction), the FDDs of both components can be asymmetrical about the middle plane between walls. In the x direction, the SB occurs as bumps and bridges enriched in one of the components, whereas the composition of the mixture between them is enriched in the other component. The dependence of the SB states on the length Lx of the FDD period at fixed average densities of the two components was examined for Lx in the range from 10 to 120 molecular diameters of the smaller size component. It was shown that for large Lx, the stable state of the system corresponds to a bridge. Because the free energy of that state decreases monotonically with increasing Lx, one can conclude that the real period is very large (infinite) and that a single bridge exists in the slit.  相似文献   

4.
It is a common approximation in the modeling of adsorption in microporous carbons to treat the pores as slit pores, whose walls are considered to consist of an infinite number of graphitic layers. In practice, such an approximation is appropriate as long as the number of graphitic layers in the wall is greater than three. However, it is understood that pore walls in microporous carbons commonly consist of three or fewer layers. As well as affecting the solid--fluid interaction within a pore, such narrow walls permit the interaction of fluid molecules through the wall, with consequences for the adsorption characteristics. We consider the effect that a distributed pore-wall thickness model can have on transport properties. At low density we find that the only significant deviation in the transport properties from the infinite pore-wall thickness model occurs in pores with single-layer walls. For a model of activated carbons with a distribution of pore widths and pore-wall thicknesses, the transport properties are generally insensitive to the effects of finite walls, in terms of both the solid-fluid interaction within a pore and fluid-fluid interaction through the pore walls.  相似文献   

5.
In this work we have studied the effect of corrugation on the thermal diffusion (soret effect) in isotopic and non-isotopic fluid mixtures confined in a slit pore. We used a boundary driven non-equilibrium molecular dynamics to simulate thermal diffusion in Lennard–Jones (LJ) binary mixtures confined in structureless Steele 10-4-3 and atomistic Lennard–Jones pore walls. The results showed that for the isotopic mixture thermal diffusion factor for both wall types agrees and the corrugation of the LJ wall has no effect in isotopic mixture. However, for non-isotopic mixture confined in atomistic LJ pore the component with stronger attraction adsorbs more to the wall than the structureless Steele wall. The effect of corrugation of pore wall on the thermal diffusion is noticeable in narrow slit pore and mixture with large difference in molecular attraction parameter of components.  相似文献   

6.
The density profiles in a fluid interacting with the two identical solid walls of a closed long slit were calculated for wide ranges of the number of fluid molecules in the slit and temperature by employing a nonlocal density functional theory. Using argon as the sample fluid and considering the walls composed of solid carbon dioxide, it is shown that the density profile corresponding to the stable state of the fluid considerably changes its shape with increasing average density rho(av) of the fluid inside the slit. Temperature dependent critical values rho(sb1) and rho(sb2) of rho(av) were identified, such that for rho(sb1)相似文献   

7.
The approach to calculating the Irving-Kirkwood pressure tensor inside plane-parallel hollow slit between solids interacting by dispersion forces is developed. Disjoining pressure is defined as a normal component of pressure tensor at slit walls and is calculated as explicit function of both the width of slit and distance from its edge. It is revealed that, at preset slit width, disjoining pressure acquires its common value for an infinite slit at triple (by the width) distance from the slit edge.  相似文献   

8.
An approach has been developed to calculation of the Irving-Kirkwood pressure tensor inside a circular plane-parallel empty slit between bodies with dispersion forces. The disjoining pressure is determined as the normal component of the pressure tensor on a slit wall and is found as a function of both the width and radius of the slit. It has been shown that, at a preset slit width, the disjoining pressure acquires a value almost equal to that inherent in an infinitely long slit already at a circular slit radius five times larger than the slit width.  相似文献   

9.
Phase equilibria of hydrogen bonding (HB) fluid confined in a slit pore with broken symmetry were investigated by the density functional theory incorporated with modified fundamental measure theory, where the symmetry breaking originated from the distinct interactions between fluid molecules and two walls of the slit pore. In terms of adsorption-desorption isotherms and the corresponding grand potentials, phase diagrams of HB fluid under various conditions are presented. Furthermore, through phase coexistences of laying transition and capillary condensation, the effects of HB interaction, pore width, fluid-pore interaction and the broken symmetry on the phase equilibrium properties are addressed. It is shown that these factors can give rise to apparent influences on the phase equilibria of confined HB fluid because of the competition between intermolecular interaction and fluid-pore interaction. Interestingly, a significant influence of broken symmetry of the slit pore is found, and thus the symmetry breaking can provide a new way to regulate the phase behavior of various confined fluids.  相似文献   

10.
Density functional theory is applied to a Lennard-Jones fluid near a single hard wall and in a slit formed by two walls. We use some simplified versions of the Weeks-Chandler-Andersen (WCA) and the Barker-Henderson (BH) theories. Only the most crude mean field version of the WCA theory, in which the hard-sphere correlation function is set equal to unity for all distances, seems useful. Use of the full WCA approximation is impractical because the effective hard-sphere diameter is density dependent. Generally, the best results are obtained using the BH macroscopic compressibility approximation. Our earlier study of "evaporation" of Lennard-Jones molecules in a slit is extended to other densities using the mean field theory. Copyright 2000 Academic Press.  相似文献   

11.
The effect of hydrophilic walls on the structure of the hydration shell of a Cl? ion is studied in terms of the model flat nanopore in contact with water vapors at room temperature by the Monte Carlo computerassisted simulations. In the field of hydrophilic walls, the hydration shell falls into two parts: the ion-enveloping part and the molecular-film spots spread over the wall surface above and under the ion. Both parts have the pronounced radial-layered structure. The three-dimensional scheme of distribution of the averaged local shell density represents a system of conical coaxial layers expanding in the direction from wall to ion. The effect of forcing out the ion from its own hydration shell is also observed for hydrophilic walls. The specific electric polarizability of the shell is strongly anisotropic. Its longitudinal component is several times larger than the transversal component and behaves nonmonotonically as the hydration shell grows, passing through the maximum. The molecular order near the walls is characterized by the preferential orientation of the molecule plane in parallel to the wall plane and the turn of symmetry axes of molecules in the direction parallel to the normal to the pore plane in the vicinity of the ion.  相似文献   

12.
Computer simulation has been employed to study the structure of water condensate filling planar pores 1.25 and 0.62 nm wide located parallel to the basal face in a silver iodide crystal at 260 K. All stages of adsorption of single molecules up to complete pore filling have been described. At an initial stage, strong clustering of molecules is observed on the walls; then, the walls are covered with a monomolecular film; and, at the final stage, molecules are adhered to the surface of the film, thus filling the internal space of the pore. First, adsorption occurs at the wall containing positive ions on the surface and, then, on the opposite wall with negative ions. On both walls, adsorbed molecules are adhered to the surface via the interaction with ions of the second crystallographic layer; given this, two types, α and β, of molecule plane orientation are realized on opposite walls. The adhesion of an adsorbed molecular film to molecules filling the interior of the pore requires the partial transition of film molecules from the α- to the β-type orientation on one wall and the inverse transition on the other wall. The deficiency of α-oriented molecules on one wall and β-oriented ones on the other is the main reason for poor wettability of the surface of the monomolecular films adsorbed on the walls. In an extremely narrow pore, molecules are simultaneously captured in the field of both walls. The forces acting from the sides of both walls result in the separation of a film into spots having structures matched to the crystalline structure of each wall, with the film being on the verge of breakage.  相似文献   

13.
In-situ small-angle neutron scattering studies of H(2) confined in small pores of polyfurfuryl alcohol-derived activated carbon at room temperature have provided for the first time its phase behavior in equilibrium with external H(2) at pressures up to 200 bar. The data were used to evaluate the density of the adsorbed fluid, which appears to be a function of both pore size and pressure and is comparable to the density of liquid H(2) in narrow nanopores at ~200 bar. The surface-molecule interactions responsible for densification of H(2) within the pores create internal pressures that exceed the external gas pressure by a factor of up to ~50, confirming the benefits of adsorptive storage over compressive storage. These results can be used to guide the development of new carbon adsorbents tailored for maximum H(2) storage capacities at near-ambient temperatures.  相似文献   

14.
We assess the accuracy of a density functional theory for athermal polymer solutions, consisting of solvent particles with a smaller radius than that of the monomers. The monomer and solvent density profiles in a slit bound by hard, flat, and inert surfaces are compared with those obtained by a Metropolis Monte Carlo simulation. At the relatively high density at which the comparison is performed, there are considerable packing effects at the walls. The density functional theory introduces a simple weight function to describe nonlocal correlations in the fluid. A recent study of surface forces in polymer solutions used a different weighting scheme to that proposed in this article, leading to less accurate results. The implications of the conclusions of that study are discussed.  相似文献   

15.
The micro-hydrodynamic method is applid to the calculation of the molecular transport in narrow channels in case of capillary condensation, at the flow anisotropy resulted from the potential of the wall surface and/or of boundary vapor and fluid phases. The mechanisms of molecular transport in the one-phase and two-phase fluid flows as a dependence of fluid density and adsorption potential of channel walls are discussed.  相似文献   

16.
17.
Adsorption isoterms and capillary condensation in an open slit with walls decorated with arrays of pillars are examined using the density functional theory. Compared with the main substrate, the pillars can have the same or different parameters in the Lennard-Jones interaction potential between them and the fluid in the slit. The roughness of the solid surface, defined as the ratio between the area of the actual surface and the area of the surface free of pillars, is controlled by the height of the pillars. It is shown that the capillary condensation pressure first increases with increasing roughness, passes through a maximum, and then decreases. The amount of adsorbed fluid at constant volume of the slit has, in general, a nonmonotonic dependence on roughness. These features of adsorption and capillary condensation are results of increased surface area and changes in the fluid-solid potential energy due to changes in roughness.  相似文献   

18.
We have performed molecular dynamics simulation studies of the structural, thermodynamic, and dynamical properties of liquid-vapor interfaces of pure and binary Stockmayer fluids of different polarity. The density profiles, the width of the liquid-vapor interface, and the orientational structure of the interfaces are calculated to characterize the structural aspects of the interfaces. Among the thermodynamic properties, we have computed the surface tension and also the free energy of transfer of a charged solute across the liquid-vapor interface for both pure and mixed fluids. Among the dynamical properties of the interfaces, we have calculated the time dependence of the velocity and angular velocity autocorrelation functions, continuous and intermittent survival probabilities, mean square displacements, diffusion coefficients, and also the dipole correlation functions and orientational relaxation times of interfacial solvent molecules. It is found that the width of the interfaces decreases with increase of concentration of the more polar component. The dipole vectors of the interfacial molecules tend to align parallel to the surfaces and this alignment is enhanced with increasing dipole moment of the fluid molecules. Also, the surface tension shows an increasing trend with increase of dipole moment of the molecules. The dynamical properties of the interfaces are found to be different from those of the corresponding bulk liquid phases. In general, the molecules at the interfaces are found to rotate and translate in the parallel direction at a somewhat faster rate than the bulk molecules. Also, on increase of concentration of the more polar component, the diffusion and orientational relaxation of interfacial molecules are found to show a weaker slowing down than those of the bulk molecules, which can be attributed to the preferential presence of the more polar component in the bulk liquid regions. The temporal behavior of the interfacial survival probabilities reveals a decrease of the survival times with increasing polarity, which can be attributed to a corresponding decrease in the interfacial thickness. Results are presented for both continuous and intermittent survival times and the origins of their differences are discussed. The free energy calculations reveal no minimum at the interfaces for adsorption of a charged solute, which shows that the ions would prefer to stay in the interior of the liquid phases, rather than at interfaces, for these model dipolar systems.  相似文献   

19.
The single component adsorption of alkanes in carbon slit pores was studied using configurational-biased grand canonical Monte Carlo simulations. Wide ranges of temperature, pressure, alkane chain length, and slit height were studied to evaluate their effects on adsorption. Adsorption isotherms and density and orientation profiles were calculated. The behavior of long alkanes at high temperatures was found to be similar to short alkanes at lower temperatures. This suggests that the isotherms may be related through the Polanyi potential theory.  相似文献   

20.
We present molecular dynamics simulations of planar Poiseuille flow of a Lennard-Jones fluid at various temperatures and body forces. Local thermostatting is used close to the walls to reach steady-state up to a limit body force. Macroscopic fields are obtained from microscopic data by time- and space-averaging and smoothing the data with a self-consistent coarse-graining method based on kernel interpolation. Two phenomena make the system interesting: (i) strongly confined fluids show layering, i.e., strong oscillations in density near the walls, and (ii) the stress deviates from the Newtonian fluid assumption, not only in the layered regime, but also much further away from the walls. Various scalar, vectorial, and tensorial fields are analyzed and related to each other in order to understand better the effects of both the inhomogeneous density and the anisotropy on the flow behavior and rheology. The eigenvalues and eigendirections of the stress tensor are used to quantify the anisotropy in stress and form the basis of a newly proposed objective, inherently anisotropic constitutive model that allows for non-collinear stress and strain gradient by construction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号