首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The role of pi-stack induced molecular aggregation on solution and solid-state luminescent properties was investigated for the tricyclodecane substituted bulky (p-phenylenevinylene)s (BTCD-60, with 60% bulky group), oligophenylenevinylenes (MEH-OPV and BTCD-OPV)s, and their polymer-oligomer binary blends. The natures of the solvent, concentration, solvent combinations (good or bad), and temperature were employed as stimuli to probe the origin of the molecular aggregates in bulky conducting polymers. Absorption, photoluminescence (PL), and time-resolved fluorescence spectroscopic techniques were employed as tools to trace aggregation in solvents such as toluene, tetrahydrofuran (THF), THF and methanol, or THF and water as well as in the solid state. The absorbance spectra of poly(2-methoxy-5-(2-ethylhexyloxy))-1,4-phenylenevinylene (MEH-PPV) and BTCD-60 indicated that the films obtained from polymers that were dissolved in aromatic solvents such as toluene were found to possess more pi-stacking as compared to that of films obtained from a good solvent such as THF. The solid-state emission spectrum of BTCD-60 was found to show almost a 5-6 times enhancement in PL intensity as compared to that of MEH-PPV. Concentration dependent excitation spectra of the polymers confirmed the presence of aggregated polymer chains in MEH-PPV, which is the main reason for the quenching of luminescence intensity in the polymer. Solvent induced aggregation studies of polymers in THF and methanol mixture further supports the existence of strong aggregation in MEH-PPV as compared to that of bulky BTCD-60. Variable temperature absorption studies confirmed the reversibility of molecular aggregation on heating/cooling cycles, and the extent of aggregation was found more in MEH-PPV chains as compared to that of BTCD-60. MEH-PPV/OPV binary blends were prepared in the entire composition range from 0 to 100% via solution blending techniques. Through selective PL excitation techniques, the effect of oligomer-to-polymer energy transfer and also luminescent enhancement in MEH-PPV via interchain separation were investigated. Both the energy transfer and the interchain separation were found to be more effective on the enhancement of luminescence properties in the BTCD blends as compared to that of MEH blends. Time-resolved fluorescence studies confirmed the existence of two types of species corresponding to the free and aggregated chains in the polymer matrix with lifetimes in the range of 0.5-2.0 ns. In the present investigation, we have successfully shown that the molecular aggregation of the pi-conjugated polymers, oligomers, and their binary blends can be controlled via suitable bulky substitution to tune their emission properties in solution as well as in the solid state.  相似文献   

2.
Poly(2-(2′-ethylhexylthio)-5-methoxy-1,4-phenylenevinylene) (PMEHTPV) was synthesized in thin films via a water-soluble precursor polymer and characterized with thermogravimetric analysis (TGA), FT–IR, and elemental analysis, etc. The PMEHTPV film could be stretched up to 10 times and showed conductivity of 0.13 Scm−1 when doped with FeCl3. The 2-ethylhexylthio group resulted in blue-shifted absorption and emission compared to those of poly(2-2′-ethylhexyloxy-5-methoxy-1,4-phenylenevinylene) (MEH-PPV). The relative quantum efficiency of the device made by PMEHTPV was 20 times higher than that of MEH-PPV. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2253–2258, 1997  相似文献   

3.
We report fluorescence studies of phototriggered changes in spectral position and shape for two azobenzene-functionalized poly(p-phenylenevinylene) derivatives, poly(2-methoxy-5-(4-phenylazophenyl-4'-(1,10-dioxydecyl))-1,4-phenylenevinylene) (MPA-10-PPV) and poly(2-hexyloxy-5-(4-phenylazophenyl-4'-(1,10-dioxydecyl))-1,4-phenylenevinylene) (HPA-10-PPV). Upon trans --> cis azobenzene photoisomerization, small (ca. 1 nm) blue shifts in spectral position are observed for MPA-10-PPV in 100% toluene, a good solvent for this polymer. These shifts are reversed upon visible irradiation and can be cycled many times. To probe the dependence of these shifts on initial polymer conformation, a dichloromethane-methanol cosolvent study was performed in which the solvent quality was decreased incrementally to induce a reduction in polymer coil dimensions. Unirradiated dichloromethane solutions of both MPA-10-PPV and HPA-10-PPV showed a red shift and reduction in quantum yield with increasing methanol concentration as expected based on literature results for other poly(p-phenylenevinylene) derivatives. These changes have been attributed to a dramatic conformational collapse by others and occur for these azo polymers over the 30-60% (v/v) methanol range. While little or no light-induced spectral shifting was observed at low (or=70%) methanol concentrations, significant spectral shifts were observed for both polymers upon azobenzene photoisomerization in solutions with 30-60% methanol, the same range over which the polymer undergoes collapse to a highly coiled state. The largest shifts are visible to the eye, with a 65:35 (v/v) dichloromethane-methanol solution of HPA-10-PPV showing yellow-orange fluorescence when the azobenzenes are trans, green fluorescence when they are cis, and yellow-orange again after the azobenzenes are returned to the trans state. We attribute these color changes to a reversible UV-phototriggered expansion of polymer coil dimensions that occurs as a result of trans --> cis azobenzene side chain isomerization and provide temperature data to support this conclusion.  相似文献   

4.
This article presents an investigation of the temperature induced modification in the microstructure and dynamics of poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) cast films using Wide-Angle X-ray Scattering (WAXS), solid-state Nuclear Magnetic Resonance (NMR), and Fluorescence Spectroscopy (PL). MEH-PPV chain motions were characterized as a function of temperature by NMR. The results indicated that the solvent used to cast the films influences the activation energy of the side-chain motions. This was concluded from the comparison of the activation energy of the toluene cast film, Ea = (54 ± 8) kJ/mol, and chloroform cast film, Ea = (69 ± 5) kJ/mol, and could be attributed to the higher side-chain packing provided by chloroform, that preferentially solvates the side chain in contrast to toluene that solvates mainly the backbone. Concerning the backbone mobility, it was observed that the torsional motions in the MEH-PPV have average amplitude of ∼10° at 300 K, which was found to be independent of the solvent used to cast the films. In order to correlate the molecular dynamics processes with the changes in the microstructure of the polymer, in situ WAXS experiments as a function of temperature were performed and revealed that the interchain spacing in the MEH-PPV molecular aggregates increases as a function of temperature, particularly at temperatures where molecular relaxations occur. It was also observed that the WAXS peak associated with the bilayer spacing becomes narrower and its intensity increases whereas the peak associated with the interbackbone planes reduces its intensity for higher temperatures. This last result could be interpreted as a decrease in the number of aggregates and the reduction of the interchain species during the MEH-PPV relaxation processes. These WAXS results were correlated with PL spectra modifications observed upon temperature treatments.  相似文献   

5.
We have used for the first time the laser intensity modulation method (LIMM) to resolve the depth profile of space charges in films of poly[(2-(2-ethylhexyl)-5-methoxy-1,4-phenylene)vinylene] (MEH-PPV), poly(pyridine-2,5-diyl) (PPY) and poly(fluorene) (PFO). The results demonstrate that in conjugated polymers space charges can not only be created but also stored permanently.  相似文献   

6.
Semirigid conjugated polymers have received much scientific and technological interest due to their unique electrical and photonic semiconducting properties. Spectroscopic studies have indicated that these polymers underwent interchain aggregation in the solution state even at large dilution; however, the origin of this event and the structure of the resultant aggregates remained the crucial issues to be resolved. In the present study, we revealed that the interchain aggregation of a conjugated polymer, poly(2,3-diphenyl-5-hexyl-1,4-phenylenevinylene) (DP6-PPV), in solutions with chloroform and toluene generated network aggregates with the hydrodynamic radii of several micrometers. Small angle neutron scattering (SANS) demonstrated that the internal structure of these aggregates could be characterized by the mass fractal dimensions of 2.2-2.7. The networks were looser in chloroform but became highly compact in the poorer toluene solvent due to severe segmental association. Increasing the temperature alleviated the segmental association in toluene while largely retaining the mass fractal dimension of the aggregates. However, the interchain aggregation was never completely dissipated by the heating, suggesting the existence of two types of segmental association with distinct stability. The highly stable segmental association that could neither be solvated by chloroform nor be disrupted thermally in toluene was attributed to the pi-pi complex already present in the DP6-PPV powder used for the solution preparation. The chains tied firmly by this complex formed network aggregates in the solution and hence reduced the entropy of mixing of the polymer. In the poorer toluene solvent, further segmental association took place within the preexisting aggregates, making the networks more compact. This type of segmental association could be disrupted by moderate heating, and its occurrence was ascribed to the poor affinity of the aliphatic side chains of DP6-PPV for toluene.  相似文献   

7.
The photoluminescence (PL) dynamics of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) blended in host polymer (polypropylene, PP) matrix as well as that in the neat film has been studied. The concentration of MEH-PPV in the PP blend is designed to be fairly low (0.01 wt %) in order to observe the intrinsic intrachain PL property of MEH-PPV in the solid state. The steady-state 0-0 PL band of the blend sample shows a blue-shift of 0.12 eV with respect to that of the neat film of MEH-PPV. The PL-excitation (PLE) spectra of the blend sample exhibit definite vibronic structure, and hence we can determine the magnitude of the Stokes shift as 0.06 eV. The blend sample shows a single-exponential PL decay at 4 K with a time constant of 850 ps. We emphasize that this single-exponential-type PL decay is an intrinsic property of the intrachain PL species. Time-resolved PL measurements confirm dynamical red-shift of the PL band in the neat film, whereas this trend is not found in the case of the PP blend. These observations indicate that the energy transfer between finite segments, which can cause exciton migration, is much less efficient within the isolated MEH-PPV polymer chain compared to the case of the interchain transfer. The time-resolved measurements further demonstrate that the Stokes shift identified in the blend sample takes place at the early stage within 50 ps following photoexcitation. We attribute this Stokes shift to the rapid increase of the planarity of the MEH-PPV chain caused by the torsion of some constituent phenyl rings following photoexcitation. Finally, based on an argument on the different magnitudes of Stokes shift between the blend sample and the neat film, we conclude that the PL of MEH-PPV in the neat film predominantly occurs at the site of interchain excitations via the interchain migration of excitons.  相似文献   

8.
We report an efficient synthesis of chiral (2S)-ethylhexanol for functionalizing and solubilizing conjugated polymers. The alpha-substituted chiral ethylhexyl side chains were obtained through a powerful and flexible asymmetric synthesis using pseudoephedrine as a chiral auxiliary. The dependence of the properties of conjugated polymers on molecular structure is investigated by circular dichroism, fluorescence, and absorption spectroscopy on two new chiral conjugated polymers, poly(3,3-bis((S)-2-ethylhexyl)-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine) (PProDOT((2S)-ethylhexyl)(2)) and poly(3,3-bis((S)-2-methylbutyl)-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine) (PProDOT((2S)-methylbutyl)(2)). The properties of PProDOT((2S)-ethylhexyl)(2)) differ significantly from those of its methylbutyl analog as investigated by chiral aggregation providing insight into the role of interchain interactions in these subsecond switching electrochromic polymers.  相似文献   

9.
The purpose of this work is to address the issue of applicability of single-molecule spectroscopy (SMS) results for conjugated polymers to "bulk" samples, e.g. conjugated polymer films. Also, some apparent inconsistencies in the literature on SMS regarding the photoluminescence spectral position of conjugated polymers are discussed. We present a series of photoluminescence spectra of thin films of the conjugated polymer poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) with a wide range of varying thickness. The thickness was varied from approximately 20 nm to the value corresponding to well-separated single molecules (SMS sample). The thickness variation resulted in a strong ( approximately 2000 cm(-1)) blue-shift and broadening of the spectrum. The result was reproduced on isolated molecules embedded into a PMMA matrix. This effect cannot be explained by a decrease in energy transfer "freedom" alone. We performed a comprehensive comparison of presented and elsewhere published spectra of MEH-PPV polymer and oligomers in different samples: films, solutions, isolated-molecule coatings and standard SMS samples. The comparison allows that the main reason behind the blue shift is conformational disorder, which is largely dependent on the sample. We also discuss some experimental aspects of SMS, such as representativeness of detected molecules, spectral sensitivity of a setup and temperature. Together with differences in sample preparation method, these issues can explain the existing inconsistencies in the literature.  相似文献   

10.
In this work the phase behavior of [6,6]-phenyl C(61)-butyric acid methyl ester (PCBM) blends with different poly(phenylene vinylene) (PPV) samples is investigated by means of standard and modulated temperature differential scanning calorimetry (DSC and MTDSC) and rapid heat-cool calorimetry (RHC). The PPV conjugated polymers include poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene) (MDMO-PPV), High T(g)-PPV which is a copolymer, and poly((2-methoxy-5-phenethoxy)-1,4-phenylene vinylene) (MPE-PPV). Comparisons of these PPV:PCBM blends with regioregular poly(3-hexyl thiophene) (P3HT):PCBM blends are made to see the different component miscibilities among different blends. The occurrence of liquid-liquid phase separation in the molten state of MDMO-PPV:PCBM and High T(g)-PPV:PCBM blends is indicated by the coexistence of double glass transitions for blends with a PCBM weight fraction of around 80 wt%. This is in contrast to the P3HT:PCBM blends where no phase separation is observed. Due to its high cooling rate (about 2000 K min(-1)), RHC proves to be a useful tool to investigate the phase separation in PPV:PCBM blends through the glass transition of these crystallizable blends. P3HT is found to have much higher thermal stability than the PPV samples.  相似文献   

11.
Novel shish-kebab type liquid crystalline poly(p-phenylenevinylene) derivatives were synthesized by Stille coupling reaction from 2,5-bis[(4-n-alkoxyl)benzoyloxy]1,4-dibromobenzene (monomer l) and 1,2-bis(tributylstannyl) ethylene (monomer 2). The polymers with alkoxy groups are soluble in common organic solvents and exhibit blue fluorescence. Both the cast film and the annealed film have large red-shifts in fluorescence spectra and show yellow fluorescence. The polymers with CN and NO2 groups show poor solubility and green fluorescence. All the polymers possess liquid crystalline smectic phases. The melting point (Tm) of the polymers decreases when the length of the alkoxy tails of the mesogenic units increases. The polymers are easily aligned under a magnetic field of 10 Tesla. It is found that the conjugated backbone and LC side chain are aligned perpendicular and parallel to the magnetic field, respectively. The polymers show optical dichroism in fluorescence spectra, suggesting that they are available for advance materials with linear optical polarization.  相似文献   

12.
MEH-PPV/层状硅酸盐纳米复合物的光物理性质   总被引:1,自引:1,他引:0  
用稳态和时间分辨荧光光谱技术,结合13C固体NMR研究了共轭高分子聚2-甲氧基-5-(2′-乙基-己氧基)-1,4-亚苯基亚乙烯基(MEH-PPV)在层状硅酸盐(montmorillonite,MMT)纳米片层受限空间中的聚集态结构、性质和对外场的响应特性.结果表明,MMT二维纳米受限空间对MEH-PPV自聚集的阻隔作用,减少了MEH-PPV链间近程相互作用较强的H-聚集,增加了J-聚集含量.结果激发态激子自淬灭的几率降低,稳态荧光量子产率提高和动态荧光寿命的延长;通过共轭碳原子的自旋-晶格弛豫时间的测定,观察了MMT对聚合物分子运动的影响,并由此探讨了MEH-PPV凝聚态与光物理性质的关系.  相似文献   

13.
Circular dichroism (CD) was induced in the films of two achiral liquid crystalline polymers, poly[(4′-(6-(methacryloyloxy)hexyl)oxy)-(4-X)azobenzene] (PM6X, X = C and N for cyano and nitro, respectively), by irradiation with one handed circularly polarized light (CPL) at 442 nm. The CD and UV spectra of the polymeric films suggest that left-CPL induces a left helical structure and right-CPL reverses the resulting structure into a right helix. For PM6C, the photoinduced CD values of the nematic film are much higher than in the casting and isotropic film. The photoinduced chirality of PM6C films is higher than PM6N due to a higher polarity of nitro groups in PM6N. The PM6N’s CD intensity around 450 nm is increased with the irradiation time of linearly polarized light (LPL) followed by left-CPL irradiation. The correlation between azobenzene chromophores and circularly polarized light will be discussed in the paper.  相似文献   

14.
In the present work, we have demonstrated a facile approach to increase the luminescence of the poly (p-phenylenevinylene)s via controlling the molecular aggregates induced by pi-stacking. We have synthesized new bulky tricyclodecane (TCD) substituted PPVs: poly(2-methoxy-5-tricyclodecanemethyleneoxy-1,4-phenylenevinylene) (MTCD-PPV), poly(bis-2,5-tricyclodecanemethyleneoxy-1,4-phenylenevinylene) (BTCD-PPV), and a series of symmetrically substituted bulky PPV copolymers (P-1-P-7) covering the entire composition range from 0 to 100 mol %. The structures of the monomers and polymers were confirmed by 1H NMR and FTIR, and the molecular weights were determined by gel permeation chromatography. The composition analysis by NMR revealed that the bulky monomer was highly reactive and the incorporation of bulky units in MEH-PPV increased irrespective of the feed ratio. The polymers possess good solubility, high molecular weights, good thermal stability, and so forth. The molecular weights of the PPV copolymers were also significantly affected by the bulky substitution: the higher the incorporation of bulky units, the lower the molecular weight. The absorption and emission studies revealed that there was no influence on the MEH-PPV by TCD substitution in solution whereas in the solid state the photoluminescence intensity of PPV increased more than 10 times. The luminescence increase in PPV was observed throughout the entire bulk and was not confined to any particular domain in the polymer. The bulky PPV copolymers showed that both the luminescence intensity (in film) and quantum yields (in solution) increased with an increase in the extent of BTCD incorporation in the MEH-PPV and attained a maximum for 50% BTCD. The TCD unit has thus proved to be an efficient bulky susbstituent for PPV as it controls the pi-stack-induced molecular aggregates in the polymer chains by increasing the interchain distances. The new bulky PPV copolymers are highly soluble, thermally stable, and highly luminescent besides being economically cheap compared to the other materials reported so far for the bulkier approach in pi-conjugated materials.  相似文献   

15.
The dynamic transfer of a conjugated polymer's organization-dependent properties from the solution state to the solid film state was probed by circularly polarized luminescence (CPL) and circular dichroism (CD) spectroscopy. Different supramolecular organizations within films and aggregate solutions of a chiral poly(p-phenylenevinylene) derivative led to opposite CPL and CD spectra. These dramatic property differences were controlled by regulating the polymer's self-assembly through solvent selection and film annealing. Therefore, different processing conditions can greatly affect the functional properties of conjugated polymer films employed in various optoelectronic applications.  相似文献   

16.
Control experiments were performed to improve the slope conversion efficiency of the organic distributed feedback laser by varying the dissolution solvents of the laser gain layer, a conjugated polymer poly(2-methoxy-5-(2?-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV) in this work. The distributed feedback configuration of the laser was prepared by holographic photopolymerisation of the polymer/liquid crystal (HPDLC) mixture. Experimental results showed that the tetrahydrofuran (THF) solvent cast laser gain layer had a lower lasing threshold (0.28 μJ/pulse) and a higher slope conversion efficiency (7.8%) than that of the xylene solvent cast laser gain layer (0.5 μJ/pulse, 4.9%). Thin film waveguide characterisation demonstrated that the THF-cast film possessed a smaller waveguide loss (5.3 cm?1) and larger net gain (17.1 cm?1) than the xylene-cast film (8.3 cm?1, 15.7 cm?1). Absorbance and photoluminescence spectra indicated that the THF-cast film showed brighter luminescence at 620 nm and larger absorbance at 532 nm, indicating that the interchain interactions of the MEH-PPV is different, which plays the vital role in improving the optical performance of our organic DFB lasers.  相似文献   

17.
Charge transport properties in thin films of Poly(2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylenevinylene) (MDMO PPV) cast using either chloroform (CF), toluene (TOL), or chlorobenzene (CB) as solvent were investigated. Hole mobility (μ) in these thin films measured using time‐of‐flight transient photoconductivity showed an increasing trend with respect to the solvent used in the same order, that is, μCF (2.4 × 10?7 cm2/Vs) < μTOL (6.9 × 10?7 cm2/Vs) < μCB (2.3 × 10?6 cm2/Vs). Observed variations in mobilities were attributed to different morphologies of MDMO PPV chains in thin films cast using the aforesaid solvents. Nature of the interchain interactions and aggregate formation were obtained using photoluminescence (PL), Raman spectroscopy, and AFM studies. Ratio of PL peak intensities of 0–0 and 0–1 transitions, which is a direct measure of interchain interaction, was the highest in CB and lowest in CF. Variation in the relative intensities of out‐of‐plane wagging of vinylene group (~963 cm?1 mode) in Raman spectra suggested different extent of coiling of polymer chains in these thin films. From these observations, it was elicited that aggregate size and interchain interactions are highest in CB and least in CF. AFM‐based topographic images of thin films further supported these variations in the size of aggregates. Variation in the aggregate sizes and interchain interactions explained the corresponding variation in the mobility. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1431–1439  相似文献   

18.
设计合成了两种主链结构相同、但取代方式不同的带有(-)-trans-桃金娘烷氧基手性侧基的规整连接聚(对亚苯基亚乙炔基-altr-间亚苯基亚乙炔基)(Myr-PMPE-1和Myr-PMPE-2),其中Myr-PMPE-1分子中手性取代基在分子链上均匀分布,而Myr-PMPE-2分子中手性取代基的分布则交替地存在局部"拥挤"和局部"松散".利用紫外-可见吸收光谱、荧光光谱和圆二色谱对两种聚合物膜的手性光性能进行了研究.结果表明,退火处理对Myr-PMPE-1膜的UV吸收和荧光光谱以及光学活性的影响都不明显,其最大不对称因子|gmax|为1.62×10-4;而退火处理对Myr-PMPE-2膜影响显著,未经退火处理或退火温度≤100℃时,Myr-PMPE-2膜几乎不显示光学活性,但当退火温度高于120℃时,随着退火温度的升高和退火时间的延长,Myr-PMPE-2膜的UV吸收和荧光光谱均稍有红移,特别是膜的光学活性显著提高,经140℃退火处理4 h后,其|gmax|可达3.07×10-3,比Myr-PMPE-1膜的高出1个数量级.  相似文献   

19.
Ag/MEH-PPV {poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]} composite films were prepared by the pulse current electrodeposition of Ag nanoparticles followed by spin coating of MEH-PPV and their enhanced electrochromic coloration was investigated. A relatively uniform Ag nanoparticle array was obtained by the electrodeposition and distinct plasmon absorption bands of Ag nanoparticles were observed. The absorption maximum of Ag/MEH-PPV was much higher than that of MEH-PPV, indicating that the Ag nanoparticles induced an enhanced absorption. In addition, the electrochromic absorption was 1.6 times higher at 500 nm wavelength, with a clearly different coloration compared to MEH-PPV.  相似文献   

20.
Using single molecule polarization spectroscopy, we investigated the alignment of a polymer solute with respect to the liquid crystal (LC) director in an LC device while applying an external electric field. The polymer solute is poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (or MEH-PPV), and the LC solvent is 5CB. The electric field induces a change in the LC director orientation from a planar alignment (no electric field) to a perpendicular (homeotropic) alignment with an applied field of 5.5 x 103 V/cm. We find that the polymer chains align with the LC director in both planar and homeotropic alignment when measured in the bulk of the LC solution away from the device interface. Single molecule polarization distributions measured as a function of distance from the LC device interface reveal a continuous change of the MEH-PPV alignment from planar to homeotropic. The observed polarization distributions are modeled using a conventional elastic model that predicts the depth profile of the LC director orientation for the applied electric field. The excellent agreement between experiment and simulations shows that the alignment of MEH-PPV follows the LC director throughout the LC sample. Furthermore, our results suggest that conjugated polymers such as MEH-PPV can be used as sensitive local probes to explore complex (and unknown) structures in anisotropic media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号