首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chain diffusion is studied in mixtures of bidisperse linear polymers of same chemical identity by means of simulations. The two subpopulations are moderately to highly entangled, with the shorter chain length N(S), fulfilling N(S)N(e)> or =5. To this end, a coarse grained model calibrated to reproduce both the structure and dynamics of chains in monodisperse entangled melts is used [A. Rakshit and R. C. Picu, J. Chem. Phys. 125, 164907 (2006)]. Its performance in reproducing chain dynamics in a polydisperse melt is tested by extensively comparing the results with those obtained from an equivalent fine scale representation of the same system (a bead-spring model). The coarse grained model is used further to investigate the scaling of the diffusion coefficient with the length of the two types of chains and its dependence on the respective fractions. The model reproduces many features observed experimentally. For example, the diffusion coefficient of one of the chain types decreases with increasing the length of the other type chains. It is shown that, in this model, this effect is not linked to constraint release. When the matrix chains become sufficiently long, their length does not influence the diffusion coefficient of the short chains anymore. The diffusion coefficient of the short chains scales with their weight fraction in a manner consistent with experimental observations. In mixtures, the dynamics of the short chains is slower and that of the long chains is marginally faster than in their respective monodisperse melts.  相似文献   

2.
We introduce a highly coarse-grained model to simulate the entangled polymer melts. In this model, a polymer chain is taken as a single coarse-grained particle, and the creation and annihilation of entanglements are regarded as stochastic events in proper time intervals according to certain rules and possibilities. We build the relationship between the probability of appearance of an entanglement between any pair of neighboring chains at a given time interval and the rate of variation of entanglements which describes the concurrence of birth and death of entanglements. The probability of disappearance of entanglements is tuned to keep the total entanglement number around the target value. This useful model can reflect many characteristics of entanglements and macroscopic properties of polymer melts. As an illustration, we apply this model to simulate the polyethylene melt of C(1000)H(2002) at 450 K and further validate this model by comparing to experimental data and other simulation results.  相似文献   

3.
We present a computer simulation model of polymer melts representing each chain as one single particle. Besides the position coordinate of each particle, we introduce a parameter n(ij) for each pair of particles i and j within a specified distance from each other. These numbers, called entanglement numbers, describe the deviation of the system of ignored coordinates from its equilibrium state for the given configuration of the centers of mass of the polymers. The deviations of the entanglement numbers from their equilibrium values give rise to transient forces, which, together with the conservative forces derived from the potential of mean force, govern the displacements of the particles. We have applied our model to a melt of C(800)H(1602) chains at 450 K and have found good agreement with experiments and more detailed simulations. Properties addressed in this paper are radial distribution functions, dynamic structure factors, and linear as well as nonlinear rheological properties.  相似文献   

4.
5.
We propose a statistical dynamical theory for the violation of the hydrodynamic Stokes-Einstein (SE) diffusion law for a spherical nanoparticle in entangled and unentangled polymer melts based on a combination of mode coupling, Brownian motion, and polymer physics ideas. The non-hydrodynamic friction coefficient is related to microscopic equilibrium structure and the length-scale-dependent polymer melt collective density fluctuation relaxation time. When local packing correlations are neglected, analytic scaling laws (with numerical prefactors) in various regimes are derived for the non-hydrodynamic diffusivity as a function of particle size, polymer radius-of-gyration, tube diameter, degree of entanglement, melt density, and temperature. Entanglement effects are the origin of large SE violations (orders of magnitude mobility enhancement) which smoothly increase as the ratio of particle radius to tube diameter decreases. Various crossover conditions for the recovery of the SE law are derived, which are qualitatively distinct for unentangled and entangled melts. The dynamical influence of packing correlations due to both repulsive and interfacial attractive forces is investigated. A central finding is that melt packing fraction, temperature, and interfacial attraction strength all influence the SE violation in qualitatively different directions depending on whether the polymers are entangled or not. Entangled systems exhibit seemingly anomalous trends as a function of these variables as a consequence of the non-diffusive nature of collective density fluctuation relaxation and the different response of polymer-particle structural correlations to adsorption on the mesoscopic entanglement length scale. The theory is in surprisingly good agreement with recent melt experiments, and new parametric studies are suggested.  相似文献   

6.
A coarse-grained model for molecular dynamics simulations is extended from lipids to proteins. In the framework of such models pioneered by Klein, atoms are described group-wise by beads, with the interactions between beads governed by effective potentials. The extension developed here is based on a coarse-grained lipid model developed previously by Marrink et al., although future versions will reconcile the approach taken with the systematic approach of Klein and other authors. Each amino acid of the protein is represented by two coarse-grained beads, one for the backbone (identical for all residues) and one for the side-chain (which differs depending on the residue type). The coarse-graining reduces the system size about 10-fold and allows integration time steps of 25-50 fs. The model is applied to simulations of discoidal high-density lipoprotein particles involving water, lipids, and two primarily helical proteins. These particles are an ideal test system for the extension of coarse-grained models. Our model proved to be reliable in maintaining the shape of preassembled particles and in reproducing the overall structural features of high-density lipoproteins accurately. Microsecond simulations of lipoprotein assembly revealed the formation of a protein-lipid complex in which two proteins are attached to either side of a discoidal lipid bilayer.  相似文献   

7.
The dynamic structure factor (DSF) for single (labeled) chains well entangled in polymer melts has been developed based on the Rouse-Mooney picture; the DSF functions derived from the Langevin equations of the model in both discrete and continuous forms are given. It is shown that for all practical purposes, it is sufficient to use the continuous form to analyze experimental results in the "safe" q region (q being the magnitude of the scattering wave vector q) where the Rouse-segment-based theories are applicable. The DSF form reduces to the same limiting form as that of the free Rouse chain as q(2)a(2) or q(2)R(2)-->infinity (a and R being the entanglement distance and the root mean square end-to-end distance, respectively), confirming what has been expected physically. The natural reduction to the limiting form allows the full range of DSF curves to be displayed in terms of the reduced Rouse variable q(2)(Z(d)t)(0.5) in a unified way. The displayed full range represents a framework or "map," with respect to which effects occurring in different regions of the DSF may be located and studied in a consistent manner. One effect is the significant or noticeable deviations of the theoretical DSF curves from the limiting curve in the region approximately 4>q(2)(Z(d)t)(0.5)> approximately 0.1 (a time region where t相似文献   

8.
A brief overview is given of the distortions observed when polymer melts or compounds are extruded. It appears that extrusion through steel dies can be done either with macroscopic slip or with no-slip wall conditions. Recent experimental and theoretical progress made in understanding the various aspects of slip at the wall, and its measurement techniques, are presented. Boundary conditions for rubber compounds flowing through steel-walled dies could be seen to be much more complex than those for melts. However many aspects of the methodologies developed are of common interest both for melts and rubber. It has already been suggested that advantages can be obtained from the use of slippery walls in extrusion. Such wall properties have already been used indeed for a long time with compounds, where processing additives are introduced. New experimental data are presented concerning two typical EPDM compounds series, obtained using several laboratory techniques at the same time. Constitutive equations for the bulk and for friction at the wall can be introduced at present and adjusted to experimental data. Die extrusion can be simulated numerically, and significant improvements can be expected in quality and productivity.  相似文献   

9.
This work extends our previous understanding concerning the nonlinear responses of entangled polymer solutions and melts to large external deformation in both simple shear and uniaxial extension. Many similarities have recently been identified for both step strain and startup continuous deformation, including elastic yielding, i.e., chain disentanglement after cessation of shear or extension, and emergence of a yield point during startup deformation that involves a deformation rate in excess of the dominant molecular relaxation rate. At a sufficiently high constant Hencky rate, uniaxial extension of an entangled melt is known to produce window-glass-like rupture. The present study provides evidence against the speculation that chain entanglements tie up into "dead knots" in constant-rate extension because of the exponentially growing chain stretching with time. In particular, it is shown that even Instron-style tensile stretching, i.e., extending a specimen by applying a constant velocity on both ends, results in rupture. Yet, in the same rate range, the same entangled melt only yields in simple shear, and the resulting shear banding is clearly not a characteristic of rupture. Thus, we conclude that chain entanglements respond to simple shear in the manner of yielding whereas uniaxial extension is rather effective in causing some entanglements to lock up, making it impossible for the entanglement network to yield at high rates.  相似文献   

10.
Two bead-spring models of flexible chains for generic coarse graining of entangled polymer melts, the excluded volume Kremer–Grest (KG) model and the modified segmental repulsive potential (mSRP) combined with a weakly repulsive potential, are compared. For chains containing an equivalent number of entanglements, we compare the chain characteristics of the KG and mSRP polymer models by determining the ratios of the entanglement lengths , the required total number of particles to capture comparable entanglement phenomena , and the time scaling ratios τmSRP/τKG. Our findings show that systems using the mSRP polymer model require half the number of particles and relax four times faster compared to the KG polymer model. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

11.
The stress relaxation function of a monodisperse or polydisperse melt, and the corresponding viscosity, have been calculated in the entanglement domain by applying the Doi-Edwards theory which relies on the reptation concept introduced by P. G. de Gennes. Though the theory has been considered as successful, the agreement with precise experiments is only qualitative, and strong anomalies remained to be explained. A new theory is presented here: it is obtained by introducing simple approximations derived from elementary but novel considerations. This theory is shown to be in good agreement with experiments on monodisperse and polydisperse melts. In particular, it explains the well-known fact that the viscosity of a monodisperse polymer melt of molecular mass M seems to increase proportionally to M3,4 when M is large.  相似文献   

12.
We develop an alternative polymer model to capture entanglements within the dissipative particle dynamics (DPD) framework by using simplified bond-bond repulsive interactions to prevent bond crossings. We show that structural and thermodynamic properties can be improved by applying a segmental repulsive potential (SRP) that is a function of the distance between the midpoints of the segments, rather than the minimum distance between segments. The alternative approach, termed the modified segmental repulsive potential (mSRP), is shown to produce chain structures and thermodynamic properties that are similar to the softly repulsive, flexible chains of standard DPD. Parameters for the mSRP are determined from topological, structural, and thermodynamic considerations. The effectiveness of the mSRP in capturing entanglements is demonstrated by calculating the diffusion and mechanical properties of an entangled polymer melt.  相似文献   

13.
We extend the bond fluctuation model, originally devised to investigate polymer systems, to contain anisotropic interactions suitable for the simulation of large flexible molecules such as liquid crystalline polymers and dendrimers. This extended model coarse grains the interaction between the flexible chains at a similar level of detail to the mesogenic units. Suitable interaction parameters are obtained by performing trial simulations on a low molar mass liquid crystalline system. The phase diagram of this system is determined as a function of the molecular stiffness. The nematic to isotropic transition temperature is found to increase with increasing stiffness.  相似文献   

14.
It is known that topological restraints by “chain entanglements” severely affect chain dynamics in polymer melts. In this field-cycling NMR relaxometry and fringe-field NMR diffusometry study, melts of linear polymers in bulk and confined to pores in a solid matrix are compared. The diameter of the pore channels was 10 nm. It is shown that the dynamics of chains in bulk dramatically deviate from those observed under pore constraints. In the latter case, one of the most indicative signatures of the reptation model is verified 28 years after its prediction by de Gennes: The frequency and molecular mass dependencies of the spin-lattice relaxation time obey the power law T!M0 v3/4 on a time scale shorter than the longest Rouse relaxation time τR. The mean squared segment displacement in the pores was also found to be compatible to the reptation law < r2>∝ M−1/2t1/2 predicted for τR < t < τd, where τd is the so-called disengagement time. Contrary to these findings, bulk melts of entangled polymers show frequency and molecular mass dependencies significantly different from what one expects on the basis of the reptation model. The data can however be described with the aid of the renormalized Rouse theory.  相似文献   

15.
The authors present the results of molecular dynamics simulations of polymer films confined by smooth walls. Simulations were performed for a wide range of chain lengths covering both nonentangled and entangled regions, as well as film thicknesses ranging from the order of unperturbed chain size to the bulk state. The simulation results for the chain size dependence on the film thickness are compared with the prediction of the scaling model. By measuring the correlation function of the end-to-end vectors, we have determined the relaxation time of confined polymer chains in different entangled states. It is shown that there is a minimum in the relaxation time of long chains when decreasing the film thickness, which is partially due to the confinement-induced disentanglement effect.  相似文献   

16.
Dissipative particle dynamics (DPD) is a well-known simulation method for soft materials and has been applied to a variety of systems. However, doubts have been cast recently on its adequacy because of upper coarse-graining limitations, which could prevent the method from being applicable to the whole mesoscopic range. This paper proposes a modified coarse-grained level tunable DPD method and demonstrates its performance for linear polymeric systems. The method can reproduce both static and dynamic properties of entangled linear polymer systems well. Linear and non-linear viscoelastic properties were predicted and despite being a mesoscale technique, the code is able to capture the transition from the plateau regime to the terminal zone with decreasing angular frequency, the transition from the Rouse to the entangled regime with increasing molecular weight and the overshoots in both shear stress and normal-stress differences upon start-up of steady shear.  相似文献   

17.
Microrheology of semidilute polymer solutions is investigated. In this paper we calculate a response function of a probe particle embedded in a semidilute polymer solution by analyzing the two-fluid model. We find that when the size of the probe particle is comparable to the viscoelastic length, the response from the longitudinal compression modes becomes more important than that of the transverse shear modes. As a result, depending on the circumstances, the obtained complex shear modulus cannot be well approximated by that measured in macroscopic rheology experiments. The present results are due to the dynamical asymmetry coupling and the existence of the cooperative dynamics, which are intrinsic to entangled polymer solutions.  相似文献   

18.
19.
20.
A new method of treating experimental data on the viscous and viscoelastic properties of various polymer melts is suggested. The dependence of the apparent viscosity on the molecular weight, temperature and shear stress can be represented as the product of three independent functions, each of them having a single argument. All three functions are universal, at least in first approximation, and the dependence of the apparent viscosity on the variables indicated is determined by two parameters (glass transition temperature and critical molecular weight), characteristic of each homologous polymer series. The viscoelastic characteristics (dynamic, relaxation, creep, as well as relaxation and retardation spectra) of polymer melts are universal in shape in the linear region and contain only one individual polymer parameter, viz., maximum Newtonian viscosity. It is shown that upon normalization of certain nonlinear characteristics with respect to the maximum Newtonian viscosity, they can also be represented in the universal form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号