首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The developed visualization methods of two dimensional (2D) site and three dimensional (3D) cube representations have been performed to show the orientation of transition dipole, charge transfer, and electron-hole coherence in two-photon absorption (TPA). The 3D cube representations of transition density can reveal visually the orientation and strength of transition dipole moment, and charge different density show the orientation of charge transfer in TPA. The 2D site representation can reveal visually the electron-hole coherence in TPA. The combination of 2D site and 3D cube representations provide clearly inspect into the charge transfer process and the contribution of excited molecular segments for TPA.  相似文献   

2.
取代基对二噻吩并噻吩衍生物的双光子吸收性质的影响   总被引:1,自引:0,他引:1  
利用ZINDO/SOS方法, 从理论上研究了对称和不对称取代两种情况下, 取代基对二噻吩并噻吩衍生物单双光子吸收性质的影响. 结果表明, 所设计的噻吩类分子具有较大的双光子吸收截面, 且双受体取代比双给体取代更有利于增大分子的双光子吸收截面. 同时发现, 此类分子受体取代可以显著增加波长较短的双光子峰附近的双光子吸收, 而给体取代则可以改善波长较长吸收峰附近的双光子吸收.  相似文献   

3.
Two-photon absorption spectroscopy is an intensity dependent nonlinear effect related to the excitation of virtual intermediate states. The classical two-photon absorption has an extremely low efficiency which is quantified by its cross-section (delta approximately 10(-48) cm4 s at 800 nm). To overcome this limitation, we demonstrate a novel effect of the two-photon absorption method utilizing the high degree of quantum optical correlation between photon pairs created by the process of spontaneous parametric downconversion. A large entangled two-photon absorption cross-section (delta(e) approximately 10(-17) cm2 at 800 nm) was measured in an organic porphyrin dendrimer. We also discuss the nonmonotonic behavior of variation of the entangled two-photon absorption cross-section by controlling the entanglement time. This novel effect may open new avenues for ultrasensitive detection in chemical and biological systems. TPA spectroscopy has been considered as a powerful tool in physics, chemistry, and biology. The inherent nonlinear process of the classical TPA is distinguishable from the single photon absorption (SPA) linear process. Although the benefits of greater penetration depth and better control and reduction of scattering, the TPA spectroscopy has been restricted by the necessity of a high power optical source due to the low efficiency of the TPA effect. The use of entangled photons from a correlated source for the purpose of the two-photon effect is promising in this regard as one may obtain two-photon effects with very small numbers of photons.  相似文献   

4.
The one-photon absorption (OPA) properties of donor-pi-bridge-acceptor-pi-bridge-donor (D-pi-A-pi-D)-type 2,1,3-benzothiadiazoles (BTD) were studied with two dimensional (2D) site and three dimensional (3D) cube representations. The 2D site representation reveals the electron-hole coherence on electronic state transitions from the ground state. The 3D representation shows the orientation of transition dipole moment with transition density, and the charge redistribution on the excited states with charge difference density. In this paper, we further developed the 2D site and 3D cube representations to investigate the two-photon absorption (TPA) properties of D-pi-A-pi-D-type BTD on electronic transitions between excited states. With the new developed 2D site and 3D cube representations, the orientation of transition dipole moment, the charge redistribution, and the electron-hole coherence for TPA of D-pi-A-pi-D-type BTD on electronic state transitions between excited states were visualized, which promote deeper understanding to the optical and electronic properties for OPA and TPA.  相似文献   

5.
氧芴三苯胺多枝分子的双光子吸收与电化学行为   总被引:1,自引:1,他引:0  
研究了3个氧芴/三苯胺衍生物: E-2,8-双(4-二苯胺基苯乙烯基)氧芴(简称OT-G1)、E-2,8-双[4-(二苯基氨基-二苯乙烯基)(4’-溴苯基)氨基-苯乙烯基]氧芴(简称OT-G1.5)和E-2,8-双-[4’,4″-二-(二苯胺基苯乙烯基)-4-二苯胺基苯乙烯基]氧芴(简称OT-G2)的双光子吸收和电化学行为. 研究结果表明, 分子“代数”从1→1.5→2增高, 氧芴三苯胺多枝分子的HOMO能级升高、双光子荧光强度和双光子吸收截面明显增大. 由于HOMO能级的升高有利于分子的电荷转移, 因而分子表现出强的双光子吸收能力, 这表明可通过电化学行为来推断出分子的双光子吸收性能.  相似文献   

6.
Many squaraines have been observed to exhibit two-photon absorption at transition energies close to those of the lowest energy one-photon electronic transitions. Here, the electronic and vibronic contributions to these low-energy two-photon absorptions are elucidated by performing correlated quantum-chemical calculations on model chromophores that differ in their terminal donor groups (diarylaminothienyl, indolenylidenemethyl, dimethylaminopolyenyl, or 4-(dimethylamino)phenylpolyenyl). For squaraines with diarylaminothienyl and dimethylaminopolyenyl donors and for the longer examples of 4-(dimethylamino)phenylpolyenyl donors, the calculated energies of the lowest two-photon active states approach those of the lowest energy one-photon active (1B(u)) states. This is consistent with the existence of purely electronic channels for low-energy two-photon absorption (TPA) in these types of chromophores. On the other hand, for all squaraines containing indolinylidenemethyl donors, the calculations indicate that there are no low-lying electronic states of appropriate symmetry for TPA. Actually, we find that the lowest energy TPA transitions can be explained through coupling of the one-photon absorption (OPA) active 1B(u) state with b(u) vibrational modes. Through implementation of Herzberg-Teller theory, we are able to identify the vibrational modes responsible for the low-energy TPA peak and to reproduce, at least qualitatively, the experimental TPA spectra of several squaraines of this type.  相似文献   

7.
合成了以三苯胺为电子给体、1,3,5-三嗪为电子受体的新型二苯乙烯类化合物.用吸收光谱、荧光光谱、飞行质谱、核磁共振氢谱和碳谱进行了表征。这些化合物具有大的双光子吸收截面和强的频率上转换荧光,其中,由三个D-π-A结构的发色团形成的三枝状八偶极分子具有最大的双光子吸收截面和最强的双光子荧光。  相似文献   

8.
采用DFT/B3LYP/6-31G*和ZINDO-SOS方法, 系统地研究了两个系列(以苯为中心的a系列和以三苯胺为中心的b系列)星型准八极矩分子及其单枝物的单光子和双光子吸收性质. 结果表明, b系列分子有较大的双光子吸收截面和更长的单光子和双光子吸收波长. 星型三分枝分子的双光子吸收截面较其单个分枝增长了超过3倍因为存在分枝间的相互作用. 含1,3,4-噁二唑的分子比含2,1,3-苯并噻二唑的分子有更大的双光子吸收截面但是最大吸收波长却蓝移, 不在红外或近红外区域.  相似文献   

9.
The development of one- and two-photon induced polymerization using CdS semiconductor quantum dots (QDs) and amine co-initiators to promote radical generation and subsequent polymerization is presented. Two-photon absorption (TPA) cross-section measurements, linear absorption, and transmission electron microscopy are used to characterize the QDs. The effectiveness of the co-initiators in increasing the efficiency of photopolymerization (polymer chains formed per excitation) is examined. Triethylamine was observed to be most effective, yielding quantum efficiencies of initiation of >5%. The interactions between the co-initiators and QDs are investigated with steady-state photoluminescence and infrared spectroscopies. Possible initiation mechanisms are discussed and supported by electrochemical data. Making use of the surface chemistry developed here and the large QD TPA cross-sections, two-photon induced polymerization is demonstrated. The large TPA cross-sections coupled with modest quantum efficiencies for initiation reveal the unique potential of molecularly passivated QDs as efficient two-photon photosensitizers for polymerization.  相似文献   

10.
The electronic structures, one-photon absorption (OPA), and two-photon absorption (TPA) properties of a series of ferrocene-based chromophores with TCF-type acceptors (TCF = 2-dicyanomethylene-3-cyano-4-methyl-2,5-dihydrofuran) have been studied by using the ZINDO-SOS method. The results have revealed that OPA and TPA of ferrocenyl derivatives are affected by the strength of the acceptor, especially the pi-bridge conjugation length. The TPA cross section increases with increasing acceptor strength and pi-bridge conjugation length. The TCF-type acceptor with a phenyl group can lead to a larger TPA cross section. Quadrupole molecules have the largest TPA cross sections (2000-3000 GM), which are about 4 times that of the corresponding dipolar molecules, indicating larger interactions between the top and bottom branches. Finally, the origins of the two-photon excitations for ferrocenyl derivatives are analyzed. The calculations show that ferrocenyl derivatives with TCF-type acceptors (especially quadrupole molecules) are promising candidates for TPA materials.  相似文献   

11.
Lin N  Luo Y  Ruud K  Zhao X  Santoro F  Rizzo A 《Chemphyschem》2011,12(17):3392-3403
A theoretical study of a dioxaborine heterocyclic compound in solution provides a case study for an analysis of the effects induced by the so-called Herzberg-Teller (HT) vibronic coupling on the one-(OPA) and two-photon absorption (TPA) spectra. For TPA, the HT vibronic coupling induces differences in the shapes of the absorption band. The study highlights the importance of vibronic coupling as a potentially important mechanism in absorption spectroscopy, able to explain differences in the OPA/TPA spectra.  相似文献   

12.
Very large two-photon absorption (TPA) cross sections at the infrared region have been revealed for J-aggregates of asymmetric zinc porphyrin using quantum-chemical calculation. The TPA properties are evaluated for monomer and aggregates of a series of push-pull porphyrins, whose syntheses are known in the literature. The two-photon absorption cross section can be greatly enhanced by increasing the strengths of the electron donor/acceptor. We also present a quantum-chemical analysis on porphyrin aggregates to understand the role of intermolecular interactions and the relationship between structural and collective nonlinear optical properties. It has been observed that the TPA properties change tremendously as monomers undergo J-aggregation and the magnitudes of TPA cross sections are highly dependent on the nature of aggregates. The importance of our results with respect to the design of photonic and photodynamic therapy materials has been discussed.  相似文献   

13.
We investigate here the relationship between molecular architecture and two-photon absorption (TPA) processes in a class of alkyl-substituted 4-quinopyran chromophores. We find that TPA cross sections diverge as the one-photon gap energy nears one-half of the two-photon gap. The molecular strategy proposed here to tune these two-excitation gaps for maximizing TPA cross sections is to twist the molecule about the bond connecting the chromophore donor and acceptor phenylene fragments. Extremely large TPA cross sections, determined by the absorption bandwidth, can then be realized (imaginary part of the third-order polarizability approximately 2.6 x 10(5) x 10(-36) esu) for fundamental photon energies near 1.0 eV, when the torsional angle approaches 104 degrees. The required torsional angle is achieved by introduction of sterically encumbered 2,2',2' ',2' " tertiary alkyl substituents.  相似文献   

14.
用密度泛函理论及ZINDO方法,从理论上研究了含二苯乙炔、二苯乙烯和偶氮苯等3种不同π电子中心的几种非线性光学(NLO)材料的双光子吸收截面δ(ω)及三阶非线性光学系数(γ).同时以正确的分子几何构型及UV-Vis光谱为基础,系统地研究和对比了它们的单光子吸收(OPA)和双光子吸收(TPA)的吸收峰位置.  相似文献   

15.
Time-dependent density functional theory (TD-DFT) is applied to model one-photon (OPA) and two-photon (TPA) absorption spectra in a series of conjugated cytotoxic dyes. Good agreement with available experimental data is found for calculated excitation energies and cross sections. Calculations show that both OPA and TPA spectra in the molecules studied are typically dominated by two strong peaks corresponding to different electronic states. We find that donor-acceptor strengths and conjugated bridge length have a strong impact on the cross-section magnitudes of low- and high-frequency TPA maxima, respectively. These trends are analyzed in terms of the natural transition orbitals of the corresponding electronic states. Observed structure-property relationships may have useful implications on design of organic conjugated chromophores with tunable two-photon absorption properties for photodynamic therapy applications.  相似文献   

16.
The two-photon absorption (TPA) properties of two extended symmetric squaraine dyes are thoroughly characterized from the experimental and quantum-chemical point of view. The two molecules are specially engineered to have a multipolar structure with increasing complexity, D-π-A-π-D and A'-π-D-π-A-π-D-π-A', respectively. The experimental TPA spectra, measured by means of the Z-scan technique in the femtoseconds regime, display considerably high values of TPA cross sections (σ(TPA)) for both molecules. In particular, the squaraine with the more extended structure shows the highest value of σ(TPA) ever reported for this class of molecules. CIS and TDDFT calculations of the one and two-photon absorption properties are carried out to clarify the origin of the observed TPA properties and fully characterize the electronic properties of these compounds. The calculations, in good agreement with the experimental data, suggest that the origin of this exceptionally high σ(TPA) can be ascribed to the presence of a peripheral A' group, that increases the density of excited states involved in the TPA process.  相似文献   

17.
Electronic spectroscopy of nine benzannelated enediynes and a related fulvene was studied under one-photon and two-photon excitation conditions. We utilize measured absorbance and emission spectra and time-resolved fluorescence decays of these molecules to calculate their radiative lifetimes and fluorescence quantum yields. The fluorescence quantum yields for the other compounds were referenced to the fluorescence quantum yield of compound 3 and used to determine relative two-photon absorption cross-sections. Further insight into experimental studies has been achieved using time-dependent density functional (TD-DFT) computations. The probability of two-photon absorption (TPA) increases noticeably for excitation to the higher excited states. The photophysical properties of benzannelated enediynes are sensitive to substitutions at both the core and the periphery of the enediyne chromophore. Considerably enhanced two-photon absorption is observed in an enediyne with donor substitution in the middle and acceptor substitution at the termini. Excited states with B symmetry are not active in TPA spectra. From a practical point of view, this study extends the range of wavelengths applicable for activation of the enediyne moiety from 350 to 600 nm and provides a rational basis for future studies in this field. Our theoretical computations confirmed that lowest energy TPA in benzannelated enediynes involves different orbitals than lowest energy one-photon absorbance and provided further support to the notion that introduction of donor and acceptor substituents at different ends of a molecule increases TPA.  相似文献   

18.
A strong enhancement of the two-photon absorption (TPA) cross section of tetrakis(4-sulfonatophenyl)porphyrin diacid (H(4)TPPS(2-)) at various wavelengths when a J-type aggregate is formed in water with respect to the one observed for the H(4)TPPS(2-) monomer in a mixture of water, dimethyl sulfoxide (DMSO), and urea is presented. The TPA properties are characterized by the open aperture Z-scan technique and the ultrafast two-photon absorption spectroscopy with white light continuum probe (TPA-WLCP) technique. The observed enhancement is discussed in terms of possible electronic cooperative effects in the aggregate.  相似文献   

19.
The understanding of the mechanism of the enhanced two-photon absorption (TPA) in multibranched chromophore systems is of importance to the design of materials with the large TPA cross-sections and for future applications. In this communication, the mechanism of enhanced TPA properties is investigated. For a dendritic model system, the excited-state dynamics for both population (T1-process) and phase relaxation (T2-process) processes involved are investigated by a combination of time-resolved spectroscopic techniques. The results of time-resolved fluorescence anisotropy are compared with previous results obtained from other branched chromophore systems. It is found that the PRL-701 trimer system, which possesses the large enhancement of two-photon absorption cross-section, gives a faster anisotropy decay (fluorescence upconversion and transient absorption), a longer population relaxation time (fluorescence lifetime), and a weaker coupling to the solvent (a larger photon echo peak shift initial value). New strategies for rational design of large TPA materials can be achieved based on a better understanding of the mechanism of the enhancement.  相似文献   

20.
Photochromophores such as cis-stilbene (1a), metacyclophenadiene (2a), and the diarylethene 3a undergo photoinduced conrotatory opening and closing of a central bond and are currently being sought out as potential candidates for media within 3D optical information storage devices. Strong molecular two-photon absorption (inducing the reversible photoisomerization) is a necessary feature for this application due to the need for high 3D spatial resolution. Here, the one- and two-photon absorption (OPA and TPA) characteristics of the open- and closed-ring isomers of 1-3 have been investigated using time-dependent density functional theory. It was determined that the excited states populated by two-photon absorption were nearly 1 eV higher in energy than the lowest energy excited state populated by one-photon absorption. The electronic structures of the TPA and OPA accessed states were then compared utilizing natural transition orbital analysis. There, it was found that states excited by OPA had pipi* character about the C-C framework associated with the bond formation/scission of the central C-C bond. In contrast, the states populated by TPA have pipi* character along the C-C skeletal periphery, including phenyl excitations. It is postulated that these differences in excited state electronic structure may lead to reaction pathways alternative to photoisomerization about the central C-C bond, impacting the utility of these compounds as 3D information storage media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号