首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
A new high performance gas hydrate inhibitor   总被引:1,自引:0,他引:1       下载免费PDF全文
In petroleum exploration and production operations, gas hydrates pose serious flow assurance, economic and safety concerns. Thermodynamic inhibitors are widely used to reduce the risks associated with gas hydrate formation. In the present study, systematic laboratory work was undertaken to determine synergistic effects between methanol and a Poly Vinyl Methyl Ether as Low Dosage Hydrate Inhibitors (LDHIs). A valuable effect was discovered at a certain ratio of methanol to the low dosage hydrate inhibitor.  相似文献   

2.
Wettability of Freon hydrates in crude oil/brine emulsions   总被引:2,自引:0,他引:2  
The surface energy of petroleum hydrates is believed to be a key parameter with regard to hydrate morphology and plugging tendency in petroleum production. As of today, the surface energy of natural gas hydrates is unknown, but will depend on the fluids in which they grow. In this work, the wettability of Freon hydrates is evaluated from their behavior in crude oil emulsions. For emulsions stabilized by colloidal particles, the particle wettability is a governing parameter for the emulsion behavior. The transition between continuous and dispersed phases as a function of brine volume in crude oil-brine emulsions containing Freon hydrates has been determined for 12 crude oils. Silica particles are used for comparison. The results show that phase inversion is highly dependent on crude oil properties. Based on the measured points of phase inversion, the wettability of the Freon hydrates generated in each system is evaluated as being oil-wet, intermediate-wet, or water-wet. Generation of oil-wet hydrates correlates with low hydrate plugging tendency. The formation of oil-wet hydrates will prevent agglomeration into large hydrate aggregates and plugs. Hence, it is believed that the method is applicable for differentiating oils with regard to hydrate morphology.  相似文献   

3.
This work examines how the binding strength of surface-immobilized "stickers" (representative of receptors or, in nonbiological systems, chemical heterogeneities) influences the adhesion between surfaces that are otherwise repulsive. The study focuses on a series of surfaces designed with fixed average adhesive energy per unit area and demonstrates quantitatively how a redistribution of the adhesive functionality into progressively larger clusters (stronger stickers) increases the probability of adhesive events. The work employs an electrostatic model system: relatively uniform, negative 1 μm silica spheres flow gently over negative silica flats. The flats contain small amounts of randomly positioned nanoscale cationic patches. The silica-silica interaction is repulsive; however, the cationic patches (present at sufficiently low levels that the overall surface charge remains substantially negative) produce local attractions. In this study, the attractions are relatively weak so that multiple patches engage to capture flowing particles. Experiments reveal an adhesion signature characteristic of a renormalized random distribution when the sticker strength is increased at an overall fixed binding strength per unit area of surface. The form of the particle capture curves are in good quantitative agreement with a simple model that assumes only a fixed adhesion energy needed for particle capture. Aside from the quantitative details that provide a simple formalism for anticipating particle adhesion, this work demonstrates how increasing the heterogeneities in the surface functionality can cause a system to go from being nonadhesive to becoming strongly adhesive. Indeed, systems containing small amounts of discretized adhesive functionality are always more adhesive than systems in which the same functionality is distributed uniformly over the surface (the mean field scenario).  相似文献   

4.
Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at concentrations higher than chemical surfactants.  相似文献   

5.
In this work attention has been focused on the effects of papermaking beating, web forming and sizing operations on the physical/chemical surface properties of bleached Eucalyptus globulus kraft fibres. Inverse gas chromatography (IGC) was used to determine the dispersive component of surface tension (γsd) as well as the acidic/basic character (according to the Lewis concept) of the solid surfaces (pulp fibres and pulp handsheets). The results have shown that the main effect of beating is to increase the fibre's Lewis acidic character. Web forming caused a strong decrease in γsd and significant increments in the adhesion works of both acidic and basic probes, lowering the ratio between the two. Nevertheless, the surface of handsheets still exhibited a dominant acidic character. The sizing operation did not change the dispersive component of the surface tension significantly but decreased the difference between the adhesion works of the acidic and basic probes, rendering the handsheet surface less Lewis acidic and more Lewis basic. Thus, although internal sizing is expected to strongly influence liquid spreading at the paper surface and liquid penetration of the fibre's network, it is concluded that beating and web forming lead to important changes in the surface energetic properties of the Eucalyptus globulus kraft fibres.  相似文献   

6.
Three laboratories (Norwegian Institute of Science and Technology [NTNU], Institut Français du Pétrole [IFP], and the Colorado School of Mines [CSM]) determined hydrate plug formation characteristics in three oils, each in three conditions: (1) in their natural state, (2) with asphaltenes removed, and (3) with naturally occurring acids removed from the oil. The objective was to determine the major variables that affect hydrate plugging tendencies in oil-dominated systems, to enable the flow assurance engineer to qualitatively assess the tendency of an oil to plug with hydrates. In the past, it was indicated that chemical effects, for example, water-in-oil/hydrate-in-oil (emulsion/dispersion) stability, prevented hydrate plugs. For example, deasphalted oils provided low emulsion/dispersion stability and thus hydrate particles aggregated. In contrast pH 14-extracted oils were reported to remove stabilizing naphthenic acids, causing asphaltene precipitation on water/hydrate droplets, stabilizing the emulsion/dispersion to prevent aggregation and pluggage. This work suggests that in addition to chemistry, shear can enable plug-free operation in the hydrate region. High shear can prevent hydrate particle aggregation, while low shear encourages particle aggregation and plugging. As a result, flow assurance engineers may be able to forecast hydrate plug liability of an oil by a combination of chemistry and flow variables, such as: a) measurements of live oil emulsion stability, b) predictions of flow line shear, and c) knowledge of water cut. Plug formation qualitative trends are provided for the above three variables. Implications for flow assurance are given.  相似文献   

7.
Because of the associated experimental difficulties, natural gas hydrate behavior in black oil is poorly understood despite its grave importance in deep-water flow assurance. Since the hydrate cannot be visually observed in black oil, traditional methods often rely on gas pressure changes to monitor hydrate formation and dissociation. Because gases have to diffuse through the liquid phase for hydrate behavior to create pressure responses, the complication of gas mass transfer is involved and hydrate behavior is only indirectly observed. This pressure monitoring technique encounters difficulties when the oil phase is too viscous, the amount of water is too small, or the gas phase is absent. In this work we employ proton nuclear magnetic resonance (NMR) spectroscopy to observe directly the liquid-to-solid conversion of the water component in black oil emulsions. The technique relies on two facts. The first, well-known, is that water becomes essentially invisible to liquid state NMR as it becomes immobile, as in hydrate or ice formation. The second, our recent finding, is that in high magnetic fields of sufficient homogeneity, it is possible to distinguish water from black oil spectrally by their chemical shifts. By following changes in the area of the water peak, the process of hydrate conversion can be measured, and, at lower temperatures, the formation of ice. Taking only seconds to accomplish, this measurement is nearly direct in contrast to conventional techniques that measure the pressure changes of the whole system and assume these changes represent formation or dissociation of hydrates - rather than simply changes in solubility. This new technique clearly can provide accurate hydrate thermodynamic data in black oils. Because the technique measures the total mobile water with rapidity, extensions should prove valuable in studying the dynamics of phase transitions in emulsions.  相似文献   

8.
Natural gas hydrates are ice-like inclusion compounds that form at high pressures and low temperatures in the presence of water and light hydrocarbons. Hydrate formation conditions are favorable in gas and oil pipelines, and their formation threatens gas and oil production. Thermodynamic hydrate inhibitors (THIs) are chemicals (e.g., methanol, monoethylene glycol) deployed in gas pipelines to depress the equilibrium temperature required for hydrate formation. This work presents a novel application of a stepwise differential scanning calorimeter (DSC) measurement to accurately determine the methane hydrate phase boundary in the presence of THIs. The scheme is first validated on a model (ice + salt water) system, and then generalized to measure hydrate equilibrium temperatures for pure systems and 0.035 mass fraction NaCl solutions diluted to 0, 0.05, 0.10, and 0.20 mass fraction methanol. The hydrate equilibrium temperatures are measured at methane pressures from (7.0 to 20.0) MPa. The measured equilibrium temperatures are compared to values computed by the predictive hydrate equilibrium tool CSMGem.  相似文献   

9.
Hydrate aggregation and deposition are critical factors in determining where and when hydrates may plug a deepwater flowline. We present the first direct measurement of structure II (cyclopentane) hydrate cohesive forces in the water, liquid hydrocarbon and gas bulk phases. For fully annealed hydrate particles, gas phase cohesive forces were approximately twice that obtained in a liquid hydrocarbon phase, and approximately six times that obtained in the water phase. Direct measurements show that hydrate cohesion force in a water-continuous bulk may be only the product of solid-solid cohesion. When excess water was present on the hydrate surface, gas phase cohesive forces increased by a factor of three, suggesting the importance of the liquid or quasi-liquid layer (QLL) in determining cohesive force. Hydrate-steel adhesion force measurements show that, when the steel surface is coated with hydrophobic wax, forces decrease up to 96%. As the micromechanical force technique is uniquely capable of measuring hydrate-surface forces with variable contact time, the present work contains significant implications for hydrate applications in flow assurance.  相似文献   

10.
Natural gas is projected to be the premium fuel of the 21st century because of availability, as well as economical and environmental considerations. Natural gas is coproduced with water from the subsurface forming gas hydrates. Hydrate formation may result in shutdown of onshore and offshore operations. Industry practice has been usage of alcohols--which have undesirable environmental impacts--to affect bulk-phase properties and inhibit hydrate formation. An alternative to alcohols is changing the surface properties through usage of polymers and surfactants, effective at 0.5-3 wt % of coproduced water. One group of low-dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are anti-agglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, reported work on hydrate anti-agglomeration is very limited. In this paper, our focus is on the use of two vastly different surfactants as anti-agglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. We examine the effectiveness of a quaternary ammonium salt (i.e., quat). Visual observation measurements show that a small concentration of the quat (0.01%) can prevent agglomeration. However, a quat is not a green chemical and therefore may be undesirable. We show that a rhamnolipid biosurfactant can be effective to a concentration of 0.05 wt %. One difference between the two surfactants is the stability of the water-in-oil emulsions created. The biosurfactant forms a less stable emulsion, which makes it very desirable for hydrate application.  相似文献   

11.
The S-layer present at the outermost cell surface of some lactobacillus species is known to convey hydrophobicity to the lactobacillus cell surface. Yet, it is commonly found that adhesion of lactobacilli to solid substrata does not proceed according to expectations based on cell surface hydrophobicity. In this paper, the role of cell surface hydrophobicity of two lactobacillus strains with and without a surface layer protein (SLP) layer has been investigated with regard to their adhesion to hydrophobically or hydrophilically functionalized glass surfaces under well-defined flow conditions and in low and high ionic strength suspensions. Similarly, the interaction of the lactobacilli with similarly functionalized atomic force microscope (AFM) tips was measured. In a low ionic strength suspension, both lactobacillus strains show higher initial deposition rates to hydrophobic glass than to hydrophilic glass, whereas in a high ionic strength suspension no clear influence of cell surface hydrophobicity on adhesion is observed. Independent of ionic strength, however, AFM detects stronger interaction forces when both bacteria and tip are hydrophobic or hydrophilic than when bacteria and tip have opposite hydrophobicities. This suggest that the interaction develops in a different way when a bacterium is forced into contact with the tip surface, like in AFM, as compared with contacts developing between a cell surface and a macroscopic substratum under flow. In addition, the distance dependence of the total Gibbs energy of interaction could only be qualitatively correlated with bacterial deposition and desorption in the parallel plate flow chamber.  相似文献   

12.
Heat generation during gas hydrate formation is an important problem because it reduces the amount of water and gas that become gas hydrates. In this research work, we present a new design of an impeller to be used for hydrate formation and to overcome this concern by following the hydrodynamic literature. CH4 hydrate formation experiments were performed in a 5.7 L continuously stirred tank reactor using a butterfly turbine (BT) impeller with no baffle (NB), full baffle (FB), half baffle (HB), and surface baffle (SB) under mixed flow conditions. Four experiments were conducted separately using single and dual impellers. In addition to the estimated induction time, the rate of hydrate formation, hydrate productivity and hydrate formation rate, constant for a maximum of 3 h, were calculated. The induction time was less for both single and dual-impeller experiments that used full baffle for less than 3 min and more than 1 h for all other experiments. In an experiment with a single impeller, a surface baffle yielded higher hydrate growth with a value of 42 × 10−8 mol/s, while in an experiment with dual impellers, a half baffle generated higher hydrate growth with a value of 28.8 × 10−8 mol/s. Both single and dual impellers achieved the highest values for the hydrate formation rates that were constant in the full-baffle experiments.  相似文献   

13.
Surface inactivation is a phenomenon that causes poor adhesion. A wood surface exposed to contaminants such as dust or atmospheric grime can experience surface inactivation. Inactivation mechanisms can reduce the attractive forces on the wood surface and lead to a decrease in wettability. Plasma treatment has been applied to recover inactivated wood surfaces for better adhesion and bonding. Plasma treatment technology is very simple and the cost is rather low. In addition, this treatment produces no environmental pollution. In this study, low pressure plasma treatment was applied to reactivate the surfaces of spruce wood for glue bonding and to increase wettability after a 9-year period of natural surface inactivation. Changes in contact angles, surface energy, surface colour and bonding strength of inactivated and oxygen plasma treated wood surfaces were studied. Wettability, bonding and other mechanical strength properties of plywood panels increased with the oxygen plasma treatment.  相似文献   

14.
Wetting of liquid droplets on living cells   总被引:2,自引:0,他引:2  
We report here the formation of adhesive conjugates between living cells and properly tailored colloidal liquid droplets bearing a cationic surfactant. We show that the droplets could wet cell surface with a well-defined contact angle, allowing direct determination of the energy of adhesion. We also describe the effect of cationic surfactant concentration on adhesion efficiency. This provides new tools to probe living cell surface properties and find practical laws for cell adhesion on well-defined surfaces.  相似文献   

15.
Kinetics of hydrate formation using gas bubble suspended in water   总被引:5,自引:0,他引:5  
An innovative experimental technique, which was devised to study the effects of temperature and pressure on the rate of hydrate formation at the surface of a gas bubble suspended in a stagnant water phase, was adapted in this work. Under such conditions, the hydrate-growth process is free from dynamic mass transfer factors. The rate of hydrate formation of methane and carbon dioxide has been systematically studied. The measured hydrate-growth data were correlated by using the molar Gibbs free energy as driving force. In the course of the experiments, some interesting surface phenomena were observed.  相似文献   

16.
The physiological state of an examined Pseudomonas fluorescens strain had a significant impact on its adhesion to glass surfaces and transport through glass-bead columns. In both batch and column studies collision efficiencies, , for exponential phase cells were much larger (≈2–3) than for stationary or decay phase cells (≈0.5–0.7). Centrifugation of exponential phase cells substantially reduced collision efficiencies (≈0.8). Over the examined range (0.02–0.2 M), ionic strength had no impact on cell attachment. The Lewis acid/base (A/B) character of the cell surface varied with physiological states: exponential phase cells exhibited larger values of the electron–donor parameter of the polar surface tension component, γS, than stationary or decay phase cells, resulting in larger calculated cell hydrophilicities. A reduction in exponential phase cell ζ-potential was observed upon centrifugation. Traditional Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energy profiles (between cells and glass surfaces) indicated energy maxima of the order of 90–130kT, and secondary energy minima of less than 10kT. Extended DLVO modeling predicted infinite energy barriers attributable to repulsive A/B interactions, and similar magnitude secondary energy minima. A pseudo-chemical kinetic approach was used to calculate activation energies of adhesion from experimental collision efficiencies. Collision efficiencies were also predicted from a diffusion-governed mass transport model incorporating interacting force fields. Predicted energy barriers underestimated cell collision efficiencies, suggesting that secondary energy minimum interactions governed initial attachment of cells. The partial reversibility of adhesion upon ionic strength reduction supported the secondary minimum interaction hypothesis.  相似文献   

17.
Bacterial adhesion to glass and metal-oxide surfaces   总被引:1,自引:0,他引:1  
Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was significantly (P < 10(-25)) correlated with total adhesion free energy (U) between the bacteria and surface (A = 2162e(-1.8U)).Although the correlation was significant, agreement between the model and data was poor for the low energy surfaces (R2 = 0.68), indicating that better models or additional methods to characterize bacteria and surfaces are still needed to more accurately describe initial bacterial adhesion to inorganic surfaces.  相似文献   

18.
The main objective of the present work is enhancement of the performance of gas hydrate kinetic inhibitors in the presence of polyethylene oxide (PEO) and polypropylene oxide (PPO) for simple gas hydrate formation in a flow mini-loop apparatus. PEO and PPO are high molecular weight polymers that are not kinetic inhibitors by their self. For this investigation, a laboratory flow mini-loop apparatus was set up to measure the induction time and rate of gas hydrate formation when a hydrate-forming substance (such as C1, C3, CO2 and i-C4) is contacted with water containing dissolved inhibitor in presence or absence of PEO or PPO under suitable temperature and pressure conditions. In each experiment, water containing inhibitors blend saturated with pure gas is circulated up to a required pressure. Pressure is maintained at a constant value during experimental runs by means of required gas make-up. The effect of PEO and PPO on induction time and gas consumption during hydrate formation is investigated in the presence or absence of PVP (polyvinylpyrrolidone) and l-tyrosine as kinetic inhibitors. Results were shown that the induction time is prolonged in the presence of PEO or PPO compared to the inhibitor only. Inclusion of PPO into a kinetic hydrate inhibitor solution shows a higher enhancement in its inhibiting performance compare to PEO. Thus, the induction time for simple gas hydrate formation in presence of kinetic hydrate inhibitor with PPO is higher, compare to kinetic hydrate inhibitor with PEO.  相似文献   

19.
Contrary to the thermodynamic inhibiting effect of methanol on methane hydrate formation from aqueous phases, hydrate forms quickly at high yield by exposing frozen water–methanol mixtures with methanol concentrations ranging from 0.6–10 wt % to methane gas at pressures from 125 bars at 253 K. Formation rates are some two orders of magnitude greater than those obtained for samples without methanol and conversion of ice is essentially complete. Ammonia has a similar catalytic effect when used in concentrations of 0.3–2.7 wt %. The structure I methane hydrate formed in this manner was characterized by powder X‐ray diffraction and Raman spectroscopy. Steps in the possible mechanism of action of methanol were studied with molecular dynamics simulations of the Ih (0001) basal plane exposed to methanol and methane gas. Simulations show that methanol from a surface aqueous layer slowly migrates into the ice lattice. Methane gas is preferentially adsorbed into the aqueous methanol surface layer. Possible consequences of the catalytic methane hydrate formation on hydrate plug formation in gas pipelines, on large scale energy‐efficient gas hydrate formation, and in planetary science are discussed.  相似文献   

20.
Bacterial adhesion to protein-coated surfaces is mediated by an interplay of specific and nonspecific interactions. Although nonspecific interactions are ubiquitously present, little is known about the physicochemical mechanisms of specific interactions. The aim of this paper is to determine the influence of ionic strength on the adhesion of two streptococcal strains to fibronectin films. Streptococcus mutans LT11 and Streptococcus intermedius NCTC11324 both possess antigen I/II with the ability to bind fibronectin from solution, but S. intermedius binds approximately 20x less fibronectin than does the S. mutans strain under identical conditions. Both strains as well as fibronectin films are negatively charged in low ionic strength phosphate buffered saline (PBS, 10x diluted), but bacteria appear uncharged in high ionic strength PBS. Physicochemical modeling on the basis of overall cell surface properties (cell surface hydrophobicity and zeta potentials) demonstrates that both strains should favor adhesion to fibronectin films in a high ionic strength environment as compared to in a low ionic strength environment, where electrostatic repulsion between equally charged surfaces is dominant. Adhesion of S. intermedius to fibronectin films in a parallel plate flow chamber was completely in line with this modeling, while in addition atomic force microscopy (AFM) indicated stronger adhesion forces upon retraction between fibronectin-coated tips and the cell surfaces in high ionic strength PBS than in low ionic strength PBS. Thus, the dependence of the interaction on ionic strength is dominated by the overall negative charge on the interacting surfaces. Adhesion of S. mutans to fibronectin films, however, was completely at odds with theoretical modeling, and the strain adhered best in low ionic strength PBS. Moreover, AFM indicated weaker repulsive forces upon approach between fibronectin-coated tips and the cell surfaces in low ionic strength PBS than in high ionic strength PBS. This indicated that the dependence of the interaction on ionic strength is dominated by electrostatic attraction between oppositely charged, localized domains on the interacting surfaces, despite their overall negative charge. In summary, this study shows that physicochemical modeling of bacterial adhesion to protein-coated surfaces is only valid provided the number of specific interaction sites on the cell surfaces is low, such as on S. intermedius NCTC11324. Nonspecific interactions are dominated by specific interactions if the number of specific interaction sites is large, such as on S. mutans LT11. Its ionic strength dependence indicates that the specific interaction is electrostatic in nature and operative between oppositely charged domains on the interacting surfaces, despite the generally overall negatively charged character of the surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号