首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At high temperatures in toluene, [2,5-Ph(2)-3,4-Tol(2)(eta(5)-C(4)COH)]Ru(CO)(2)H (3) undergoes hydrogen elimination in the presence of PPh(3) to produce the ruthenium phosphine complex [2,5-Ph(2)-3,4-Tol(2)-(eta(4)-C(4)CO)]Ru(PPh(3))(CO)(2) (6). In the absence of alcohols, the lack of RuH/OD exchange, a rate law first order in Ru and zero order in phosphine, and kinetic deuterium isotope effects all point to a mechanism involving irreversible formation of a transient dihydrogen ruthenium complex B, loss of H(2) to give unsaturated ruthenium complex A, and trapping by PPh(3) to give 6. DFT calculations showed that a mechanism involving direct transfer of a hydrogen from the CpOH group to form B had too high a barrier to be considered. DFT calculations also indicated that an alcohol or the CpOH group of 3 could provide a low energy pathway for formation of B. PGSE NMR measurements established that 3 is a hydrogen-bonded dimer in toluene, and the first-order kinetics indicate that two molecules of 3 are also involved in the transition state for hydrogen transfer to form B, which is the rate-limiting step. In the presence of ethanol, hydrogen loss from 3 is accelerated and RuD/OH exchange occurs 250 times faster than in its absence. Calculations indicate that the transition state for dihydrogen complex formation involves an ethanol bridge between the acidic CpOH and hydridic RuH of 3; the alcohol facilitates proton transfer and accelerates the reversible formation of dihydrogen complex B. In the presence of EtOH, the rate-limiting step shifts to the loss of hydrogen from B.  相似文献   

2.
Gold nanoparticles with uniform mean sizes (≈3 nm) loaded onto various supports have been prepared and studied for the oxidant-free dehydrogenation of benzyl alcohol to benzaldehyde and hydrogen. The use of hydrotalcite (HT), which possesses both strong acidity and strong basicity, provides the best catalytic performance. Au/HT catalysts with various mean Au particle sizes (2.1-21 nm) have been successfully prepared by a deposition-precipitation method under controlled conditions. Detailed catalytic reaction studies with these catalysts demonstrate that the Au-catalyzed dehydrogenation of benzyl alcohol is a structure-sensitive reaction. The turnover frequency (TOF) increases with decreasing Au mean particle size (from 12 to 2.1 nm). A steep rise in TOF occurs when the mean Au particle size becomes smaller than 4 nm. Our present work suggests that the acid-base properties of the support and the size of Au nanoparticles are two key factors controlling the alcohol dehydrogenation catalysis. A reaction mechanism is proposed to rationalize these results. It is assumed that the activation of the β-C-H bond of alcohol, which requires the coordinatively unsaturated Au atoms, is the rate-determining step.  相似文献   

3.
Zeng G  Li S 《Inorganic chemistry》2011,50(21):10572-10580
Density functional theory calculations were performed to elucidate the mechanism of dehydrogenative coupling of primary alcohols and amines mediated by a PNN-Ru(II) hydride complex (PNN = (2-(di-tert-butylphosphinomethyl)-6-(diethylaminomethyl)pyridine)). A plausible reaction pathway was proposed which contains three stages: (1) The alcohol dehydrogenation reaction to generate the aldehyde and H(2); (2) The aldehyde-amine condensation reaction to form the hemiaminal intermediate; (3) The dehydrogenation process of the hemiaminal intermediate to yield the final amide product with the liberation of H(2). The first and third stages occur via a similar pathway: (a) Proton transfer from the substrate to the PNN ligand; (b) Intramolecular rearrangement of the deprotonated substrate to form an anagostic complex; (c) Hydride transfer from the deprotonated substrate to the Ru center to yield the trans-dihydride intermediate and the aldehyde (or amide); (d) Benzylic proton migration from the PNN ligand to the metal center forming a dihydrogen complex and subsequent H(2) liberation to regenerate the catalyst. In all these steps, the metal-ligand cooperation plays an essential role. In proton transfer steps (a) and (d), the metal-ligand cooperation is achieved through the aromatization/dearomatization processes of the PNN ligand. While in steps (b) and (c), their collaboration are demonstrated by the formation of an anagostic interaction between Ru and the C-H bond and two ionic hydrogen bonds supported by the PNN ligand.  相似文献   

4.
Acceptorless dehydrogenation (AD) that uses non-toxic reagents and produces no waste is a type of catalytic reactions toward green chemistry. Acceptorless alcohol dehydrogenation (AAD) can serve as a key step in constructing new bonds such as C-C and C-N bonds in which alcohols need to be activated into more reactive ketones or aldehydes. AD reactions also can be utilized for hydrogen production from biomass or its fermentation products (mainly alcohols). Reversible hydrogenation/ dehy-drogenation with hydrogen uptake/release is crucial to realization of the potential organic hydride hydrogen storage. In this article, we review the recent computational mechanistic studies of the AD reactions catalyzed by various transition metal complexes as well as the experimental developments. These reactions include acceptorless alcohol dehydrogenations, reversible dehydrogenation/hydrogenation of nitrogen heterocycles, dehydrogenative coupling reactions of alcohols and amines to construct C-N bonds, and dehydrogenative coupling reactions of alcohols and unsaturated substrates to form C-C bonds. For the catalysts possessing metal-ligand bifunctional active sites (such as 28, 45, 86, 87, and 106 in the paper), the dehydrogenations prefer the "bifunctional double hydrogen transfer" mechanism rather than the generally accepted-H elimination mechanism. However, methanol dehydrogenation involved in the C-C coupling reaction of methanol and allene, catalyzed by the iridium complex 121, takes place via the-H elimination mechanism, because the Lewis basicity of either the-allyl moiety or the carboxyl group of the ligand is too weak to exert high Lewis basic reactivity. Unveiling the catalytic mechanisms of AD reactions could help to develop new catalysts.  相似文献   

5.
Complete reaction pathways relevant to CO2 hydrogenation by using a homogeneous ruthenium dihydride catalyst ([Ru(dmpe)2H2], dmpe=Me2PCH2CH2PMe2) have been investigated by ab initio metadynamics. This approach has allowed reaction intermediates to be identified and free-energy profiles to be calculated, which provide new insights into the experimentally observed reaction pathway. Our simulations indicate that CO2 insertion, which leads to the formation of formate complexes, proceeds by a concerted insertion mechanism. It is a rapid and direct process with a relatively low activation barrier, which is in agreement with experimental observations. Subsequent H2 insertion into the formate--Ru complex, which leads to the formation of formic acid, instead occurs via an intermediate [Ru(eta2-H2)] complex in which the molecular hydrogen coordinates to the ruthenium center and interacts weakly with the formate group. This step has been identified as the rate-limiting step. The reaction completes by hydrogen transfer from the [Ru(eta2-H2)] complex to the formate oxygen atom, which forms a dihydrogen-bonded Ru--HHO(CHO) complex. The activation energy for the H2 insertion step is lower for the trans isomer than for the cis isomer. A simple measure of the catalytic activity was proposed based on the structure of the transition state of the identified rate-limiting step. From this measure, the relationship between catalysts with different ligands and their experimental catalytic activities can be explained.  相似文献   

6.
Cyclopentadiene (CPD) and methylcyclopentadiene (MCPD) are important intermediates that have been widely used in the production of high-energy-density rocket fuels, polymers and valuable chemicals. Currently, CPD and MCPD are produced from fossil energies at very low yields, which greatly limits their application. As a solution to this problem, we disclose an alternative two-step bio-route to access CPD and MCPD using xylose or extracted hemicellulose as the feedstock. In the first step, cyclopentanone (CPO) was directly produced by the selective hydrogenolysis of xylose or extracted hemicellulose over a commercial Ru/C catalyst in an acid-free toluene/NaCl aqueous solution biphasic system. In the second step, CPO was selectively converted to CPD by a cascade hydrodeoxygenation/dehydrogenation reaction over zinc molybdate catalysts. When methanol was introduced with CPO and hydrogen, MCPD was selectively obtained by a cascade dehydrogenation/aldol condensation/selective hydrodeoxygenation reaction over zinc molybdate catalysts.  相似文献   

7.
Liu C  Liao S  Li Q  Feng S  Sun Q  Yu X  Xu Q 《The Journal of organic chemistry》2011,76(14):5759-5773
The thermodynamically unfavorable anaerobic dehydrogenative alcohol activation to aldehydes and hydridometal species is found to be the bottleneck in metal-catalyzed N-alkylations due to a general and unnoticed catalyst deactivation by amines/amides. Thus, different from the anaerobic dehydrogenation process in borrowing hydrogen or hydrogen autotransfer reactions that require noble metal complexes or addition of capricious ligands for catalyst activation, the water-producing, exothermic, metal-catalyzed aerobic alcohol oxidation is thermodynamically more favorable and the most effective and advantageous aldehyde generation protocol. This leads to a general and advantageous air-promoted metal-catalyzed aerobic N-alkylation methodology that effectively uses many simpler, less expensive, more available, and ligand-free metal catalysts that were inactive under typical anaerobic borrowing hydrogen conditions, avoiding the use of preformed metal complexes and activating ligands and the exclusive requirement of inert atmosphere protection. This aerobic method is quite general in substrate scope and tolerates various amides, amines, and alcohols, revealing its potentially broad utilities and interests in academy and industry. In contrast to the commonly accepted borrowing hydrogen mechanism, based on a thorough mechanistic study and supported by the related literature background, a new mechanism analogous to the relay race game that has never been proposed in metal-catalyzed N-alkylation reactions is presented.  相似文献   

8.
Hydrogenation of cinnamaldehyde has been investigated over a series of Ru—Sn/C catalysts having various Sn/Ru ratios. Addition of tin to Ru/C decreases the CO chemisorption capability of the catalyst. The overall turnover frequency of cinnamaldehyde disappearance and the selectivity to cinnamyl alcohol increase with the Sn/Ru ratio. It is suggested that hydrogenation of the CO group occurs on sites associated with tin ions. On these sites the carbonyl group is polarized, facilitating hydrogen transfer from an adjacent RuH site.  相似文献   

9.
Ru and Pd (2 wt%) loaded on pure and on Ndoped carbon nanotubes (NCNTs) were prepared and tested using the isopropyl alcohol decomposition reaction as probe reaction. The presence of nitrogen functionalities (pyridinic, pyrrolic, and quaternary nitrogen) on the nitrogen doped support induced a higher metal dispersion: Pd/NCNT (1.8 nm) Pd/CNT (4.9 nm), and Ru/NCNT (2.4 nm) Ru/CNT (3.0 nm). The catalytic activity of the supports was determined first. Isopropyl alcohol conversion produces acetone on CNTs while on NCNTs it led to both dehydration and dehydrogenation products. At 210 °C and in the presence of air, the isopropyl alcohol conversion was higher on the NCNTs (25%) than on the CNTs (11%). The Pd loaded catalysts were more active and more selective than the Ru ones. At 115 °C, the Pd catalysts were 100% selective towards acetone for a conversion of 100%, whereas the Ru catalysts led to dehydration and dehydrogenation products. The nitrogen doping induced the appearance of redox properties when oxygen is present in the reaction mixture.  相似文献   

10.
在小型固定流化床(FFB)装置上考察了Y与ZSM-5分子筛催化剂以及Y分子筛催化剂上温度、剂油比对全氢菲裂化环烷环开环反应的影响。结果表明,全氢菲在分子筛催化剂上通过环烷环开环反应生成环己烷、十氢萘等单环或双环环烷烃;单环或双环环烷烃进一步侧链断裂生成2-甲基戊烷、甲基己烷等异构烷烃等,异构化生成二甲基环戊烷、甲乙基环戊烷等烷基环戊烷,氢转移生成苯、甲苯、二甲苯等烷基苯,进行深度氢转移反应生成萘、烷基萘等双环芳烃;另外,全氢菲也会通过脱氢缩合生成菲、芘等三环以上芳烃甚至焦炭等。由于扩散和吸附性能的影响,其裂化开环反应的选择性在Y分子筛催化剂上比在ZSM-5分子筛催化剂上高。因此,全氢菲环烷环开环与脱氢缩合反应的相对比例(s(NRO)/s(DHC))在Y分子筛催化剂上较高;在Y分子筛催化剂上,温度为475~550 ℃、剂油比为3.0~9.0,反应温度升高或者剂油比增加,双分子氢转移以及脱氢缩合反应增强,导致环烷环开环反应产物选择性降低。  相似文献   

11.
Electronic structure calculations have been carried out to provide a molecular interpretation for dihydrogen phosphate stability in water relative to that of metaphosphate. Specifically, hydration enthalpies of biologically important metaphosphate and dihydrogen phosphate with one to three waters have been computed with second-order M?ller-Plesset perturbation and density functional theory (B3LYP) with up to the aug-cc-pvtz basis set and compared to experiment. The inclusion of basis set superposition error corrections and supplemental diffuse functions are necessary to predict hydration enthalpies within experimental uncertainty. Natural bond orbital analysis is used to rationalize underlying hydrogen bond configurations and key orbital interactions responsible for the experimentally reported difference in hydration enthalpies between metaphosphate and dihydrogen phosphate. In general, dihydrogen phosphate forms stronger hydrogen bonds compared to metaphosphate due to a greater charge transfer or enhanced orbital overlap between the phosphoryl oxygen lone pairs, n(O), and the antibonding O-H bond of water. Intramolecular distal lone pair repulsion with the donor n(O) orbital of dihydrogen phosphate distorts symmetric conformations, which improves n(O) and sigma*(O-H) overlap and ultimately the hydrogen bond strength. Unlike metaphosphate, water complexed to dihydrogen phosphate can serve as both a hydrogen bond donor and a hydrogen bond acceptor, which results in cooperative charge transfer and a reduction of the energy gap between n(O) and sigma*(O-H), leading to stronger hydrogen bonds. This study offers insight into how orbital interactions mediate hydrogen bond strengths with potential implications on the understanding of the kinetics and mechanism in enzymatic phosphoryl transfer reactions.  相似文献   

12.
Dehydrogenation of benzyl-type alcohols and hydroaromatic compounds by 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) and tetrachloro-p-benzoquinone were examined, and the hydrogen transfer from 1-phenyl-1-propanol to DDQ was investigated in detail. The yield of the propiophenone increased when solvents which would be expected to increase the concentration of the charge transfer complex between the alcohol and DDQ were used. Initial rates of the reaction in dioxane were proportional to the concentration of the hydrogen donor and that of the hydrogen acceptor. In the dehydrogenation of several para- or meta-substituted 1-phenyl-1-propanols at 60°, ?3.30 was obtained as a value of reaction constant. Relative rates of the reaction of PhCH(OH)Et, PhCH(OD)Et, PhCD(OH)Et, and PhCD(OD)Et were 8.9,9.1,1.0 and 1, respectively. This result suggests that the transfer of the H atom attached to the α-carbon of the alcohol is the rate-determining step. This and some other results support a two-step ionic mechanism for the dehydrogenation of alcohols.  相似文献   

13.
Imitating nature′s approach in nucleophile‐activated formaldehyde dehydrogenation, air‐stable ruthenium complexes proved to be exquisite catalysts for the dehydrogenation of formaldehyde hydrate as well as for the transfer hydrogenation to unsaturated organic substrates at loadings as low as 0.5 mol %. Concatenation of the chemical hydrogen‐fixation route with an oxidase‐mediated activation of methanol gives an artificial methylotrophic in vitro metabolism providing methanol‐derived reduction equivalents for synthetic hydrogenation purposes. Moreover, for the first time methanol reforming at room temperature was achieved on the basis of this bioinduced dehydrogenation path delivering hydrogen gas from aqueous methanol.  相似文献   

14.
碳纳米管因其独特的电子结构和性能引起了研究者们广泛的兴趣,尤其是它有序的纳米级管腔结构,可以为催化剂和催化反应提供一种独特的一维限域环境.碳纳米管的限域效应主要由于其管腔几何和电子结构可以使反应物发生富集、对金属纳米颗粒的尺寸限制以及对电子结构的调变作用.一系列研究表明,碳纳米管的限域效应可以对催化剂的活性进行调变,但是对产物选择性的影响方面研究得较少,特别是管径小于4 nm的碳纳米管的限域体系.因此,本文以肉桂醛选择性加氢反应为探针,研究限域效应对产物选择性的影响规律.采用管径为1–3 nm的碳纳米管,基于气相填充的方法将Ru纳米团簇分散于碳纳米管的管腔中,得到碳纳米管限域的Ru催化剂(Ru@CNT);采用浸渍法制备了碳纳米管管外壁负载的催化剂(Ru/CNT)来进行对比.肉桂醛含有共轭的C=C和C=O键,由于C=C键能低于C=O,前者更易发生加氢反应.结果表明,分散在碳纳米管外壁的Ru催化剂可以催化肉桂醛中的C=C加氢,得到氢化肉桂醛(HCAL);而Ru@CNT催化剂不仅可以催化C=C加氢得到氢化肉桂醛HCAL,还可以催化C=O键加氢得到肉桂醇,以及氢化肉桂醇. 通过高分辨透射电镜、拉曼、程序升温还原、程序升温脱附对催化剂进行了表征.发现碳纳米管限域的纳米团簇金属颗粒的粒径大约为1–2 nm,与管外负载的金属颗粒相近,但是Ru@CNT催化剂上仍有部分金属纳米团簇分布在管外壁,这可能是Ru@CNT催化剂上有C=C键加氢产物的一个原因.碳纳米管独特的限域效应促进了Ru物种的还原,在H2气氛下管内Ru物种的还原温度比管外低20oC.金属与碳纳米管的内、外壁之间的电子相互作用,纳米管腔的空间限制作用及管腔富集作用可能是产物分布产生差异的原因.  相似文献   

15.
The catalytic conversion of 1,2-cyclohexanediol to adipic anhydride by Ru(IV)O(tpa) (tpa ═ tris(2-pyridylmethyl)amine) is discussed using density functional theory calculations. The whole reaction is divided into three steps: (1) formation of α-hydroxy cyclohexanone by dehydrogenation of cyclohexanediol, (2) formation of 1,2-cyclohexanedione by dehydrogenation of α-hydroxy cyclohexanone, and (3) formation of adipic anhydride by oxygenation of cyclohexanedione. In each step the two-electron oxidation is performed by Ru(IV)O(tpa) active species, which is reduced to bis-aqua Ru(II)(tpa) complex. The Ru(II) complex is reactivated using Ce(IV) and water as an oxygen source. There are two different pathways of the first two steps of the conversion depending on whether the direct H-atom abstraction occurs on a C-H bond or on its adjacent oxygen O-H. In the first step, the C-H (O-H) bond dissociation occurs in TS1 (TS2-1) with an activation barrier of 21.4 (21.6) kcal/mol, which is followed by abstraction of another hydrogen with the spin transition in both pathways. The second process also bifurcates into two reaction pathways. TS3 (TS4-1) is leading to dissociation of the C-H (O-H) bond, and the activation barrier of TS3 (TS4-1) is 20.2 (20.7) kcal/mol. In the third step, oxo ligand attack on the carbonyl carbon and hydrogen migration from the water ligand occur via TS5 with an activation barrier of 17.4 kcal/mol leading to a stable tetrahedral intermediate in a triplet state. However, the slightly higher energy singlet state of this tetrahedral intermediate is unstable; therefore, a spin crossover spontaneously transforms the tetrahedral intermediate into a dione complex by a hydrogen rebound and a C-C bond cleavage. Kinetic isotope effects (k(H)/k(D)) for the electronic processes of the C-H bond dissociations calculated to be 4.9-7.4 at 300 K are in good agreement with experiment values of 2.8-9.0.  相似文献   

16.
Compared to earlier single site catalysts, greatly enhanced rates of electrocatalytic water oxidation by the Ru carbene catalyst [Ru(tpy)(Mebim-py)(OH(2))](2+) (tpy = 2,2':6',2'-terpyridine; Mebim-py = 3-methyl-1-pyridylbenzimidazol-2-ylidene) have been observed. The mechanism appears to be the same with proton coupled electron transfer (PCET) activation to Ru(V)=O(3+) followed by O-O coupling and further oxidation. An important factor in the enhanced reactivity of the carbene complex may come from increased driving force for the O-O bond forming step.  相似文献   

17.
Dimethylamine-borane, (CH(3))(2)NHBH(3), has been considered as one of the attractive materials for the efficient storage of hydrogen, which is still one of the key issues in the "Hydrogen Economy". In a recent communication we have reported the synthesis and characterization of 3-aminopropyltriethoxysilane stabilized ruthenium(0) nanoparticles with the preliminary results for their catalytic performance in the dehydrogenation of dimethylamine-borane at room temperature. Herein, we report a complete work including (i) effect of initial [APTS]/[Ru] molar ratio on both the size and the catalytic activity of ruthenium(0) nanoparticles, (ii) collection of extensive kinetic data under non-MTL conditions depending on the substrate and catalyst concentrations to define the rate law of Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane at room temperature, (iii) determination of activation parameters (E(a), ΔH(#) and ΔS(#)) for Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane; (iv) demonstration of the catalytic lifetime of Ru(0)/APTS nanoparticles in the dehydrogenation of dimethylamine-borane at room temperature, (v) testing the bottlability and reusability of Ru(0)/APTS nanocatalyst in the room-temperature dehydrogenation of dimethylamine-borane, (vi) quantitative carbon disulfide (CS(2)) poisoning experiments to find a corrected TTO and TOF values on a per-active-ruthenium-atom basis, (vii) a summary of extensive literature review for the catalysts tested in the catalytic dehydrogenation of dimethylamine-borane as part of the results and discussions.  相似文献   

18.
New insights into the structural, electronic and catalytic properties of Fe complexes are provided by a density functional theory study of model as well as real [Fe(II)(H)(2)(diphosphine)(diamine)] systems. Calculations conducted using several different functionals on the trans- and cis-isomers of [Fe(II)(H)(2)(S-xylbinap)(S,S-dpen)] complexes show that, as with the [Ru(II)(H)(2)(diphosphine)(diamine)] complexes, the trans-[Fe(II)(H)(2)(diphosphine)(diamine)] complex is the more stable isomer. Analysis of the spin states of the trans-[Fe(II)(H)(2)(diphosphine)(diamine)] complexes also shows that the singlet state is significantly more stable than the triplet and the quintet, as with the [Ru(II)(H)(2)(diphosphine)(diamine)] complexes. Calculations of the catalytic cycle for the hydrogenation of ketones using two model trans-[M(II)(H)(2)(PH(3))(2)(en)] catalysts, where M = Ru and Fe, show that the mechanism of reaction as well as the activation energies are very similar, in particular: (i) the ketone/alcohol hydrogen transfer reaction occurs through the metal-ligand bifunctional mechanism, with energy barriers of 3.4 and 3.2 kcal mol(-1) for the Ru- and Fe-catalysed reactions, respectively; (ii) the heterolytic splitting of H(2) across the M[partial double bond, bottom dashed]N bond for the regeneration of the Ru and Fe catalysts has an activation barrier of 13.8 and 12.8 kcal mol(-1), respectively, and is expected to be the rate determining step for both catalytic systems. The reduction of acetophenone by trans-[M(II)(H)(2)(S-xylbinap)(S,S-dpen)] complexes along two competitive reaction pathways, shows that the intermediates for the Fe catalytic system are similar to those responsible for the high enantioselectivity of (R)-alcohol in those proposed trans-[Ru(II)(H)(2)(S-xylbinap)(S,S-dpen)] catalysed acetophenone hydrogenation reaction. Thus the high enantiomeric excess in the hydrogenation of acetophenone could, in principle, be achieved using Fe catalysts.  相似文献   

19.
The activities of a zeolite-containing catalyst and catalysts containing a noble metal in intermolecular hydrogen transfer between С6 hydrocarbons are compared. The zeolite-containing catalyst is ineffective in hydrogen transfer from cyclohexane to 1-hexene and in cyclohexene conversion at <400°С. Cyclohexene disproportionation at Т < 200°С takes place only over catalysts containing a noble metal. The cyclohexene conversion selectivity depends strongly on the support type. Using deuterated compounds, it has been demonstrated that intermolecular hydrogen transfer via the dehydrogenation–hydrogenation mechanism involves only the initial cyclohexene.  相似文献   

20.
Hydrogenation and transfer hydrogenation of imines with cyclohexa‐1,4‐dienes, as well as with a representative Hantzsch ester dihydrogen surrogate, are reported. Both processes are catalyzed by tethered Ru?S complexes but differ in the activation mode of the dihydrogen source: cooperative activation of the H?H bond at the Ru?S bond leads to the corresponding Ru?H complex and protonation of the sulfur atom, whereas the same cationic Ru?S catalyst abstracts a hydride from a donor‐substituted cyclohexa‐1,4‐diene to form the neutral Ru?H complex and a low‐energy Wheland intermediate. A sequence of proton and hydride transfers on the imine substrate then yields an amine. The reaction pathways are analyzed computationally, and the established mechanistic pictures are in agreement with the experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号