首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper deals with the problem of guaranteed cost control for uncertain neutral stochastic systems. The parameter uncertainties are assumed to be time-varying but norm-bounded. Dynamic output feedback controllers are designed such that, for all admissible uncertainties, the resulting closed-loop system is mean-square asymptotically stable and an upper bound on the closed-loop value of the cost function is guaranteed. By employing a linear matrix inequality (LMI) approach, a sufficient condition for the solvability of the underlying problem is obtained. A numerical example is provided to demonstrate the potential of the proposed techniques.  相似文献   

2.
The robust non-fragile guaranteed cost control problem is studied in this paper for a class of uncertain linear large-scale systems with time-varying delays in subsystem interconnections and given quadratic cost functions. The uncertainty in the system is assumed to be norm-bounded and time-varying. Also, the state-feedback gains for subsystems of the large-scale system are assumed to have norm-bounded controller gain variations. The problem is to design state feedback control laws such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties. Sufficient conditions for the existence of such controllers are derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. A parameterized characterization of the robust non-fragile guaranteed cost controllers is given in terms of the feasible solutions to a certain LMI. Finally, in order to show the application of the proposed method, a numerical example is included.  相似文献   

3.
In this paper, the robust guaranteed cost control problem for a class of uncertain linear differential systems of neutral type with a given quadratic cost functions is investigated. The uncertainty is assumed to be norm-bounded and time-varying nonlinear. The problem is to design a state feedback control laws such that the closed-loop system is robustly stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainty and time delay. A criterion for the existence of such controllers is derived based on the matrix inequality approach combined with the Lyapunov method. A parameterized characterization of the robust guaranteed cost controllers is given in terms of the feasible solutions to the certain matrix inequalities. A numerical example is given to illustrate the proposed method.  相似文献   

4.
This paper considers the problem of robust guaranteed cost control of linear discrete time-delay systems with parametric uncertainties. By matrix inequality approach, the robust quadratic stability of the system is studied. A control design method is developed such that the closed-loop system with a cost function has a upper bound irrespective of all admissible parameter uncertainties and unknown time delays. Furthermore, the upper bound (cost) can be optimized by incorporating with a minimization problem. A numerical example is given to show the potential of the proposed techniques.  相似文献   

5.
This paper deals with the problem of non-fragile robust stabilization and H control for a class of uncertain stochastic nonlinear time-delay systems. The parametric uncertainties are real time-varying as well as norm bounded. The time-delay factors are unknown and time-varying with known bounds. The aim is to design a memoryless non-fragile state feedback control law such that the closed-loop system is stochastically asymptotically stable in the mean square and the effect of the disturbance input on the controlled output is less than a prescribed level for all admissible parameter uncertainties. New sufficient conditions for the existence of such controllers are presented based on the linear matrix inequalities (LMIs) approach. Numerical example is given to illustrate the effectiveness of the developed techniques.  相似文献   

6.
不确定离散模糊随机系统的鲁棒方差约束输出反馈控制   总被引:1,自引:0,他引:1  
对一类具有范数有界不确定性的离散T-S模糊随机系统。研究不仅使整个闭环模糊系统全局渐近稳定。而且每个模糊子系统的稳态状态方差满足给定上界性能指标约束的输出反馈鲁棒方差控制律的设计问题。利用线性矩阵不等式(LMI)技术,导出输出反馈鲁棒方差控制律的存在条件,并基于矩阵相似变换给出其可解性条件,同时用一组线性矩阵不等式的可行解。给出输出反馈鲁棒方差控制律的一个参数化表达形式。  相似文献   

7.
This paper concerns the nonfragile guaranteed cost control problem for a class of nonlinear dynamic systems with multiple time delays and controller gain perturbations. Guaranteed cost control law is designed under two classes of perturbations, namely, additive form and multiplicative form. The problem is to design a memoryless state feedback control law such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound for all admissible uncertainties. Based on the linear matrix inequality (LMI) approach, some delay-dependent conditions for the existence of such controller are derived. A numerical example is given to illustrate the proposed method.  相似文献   

8.
The guaranteed cost control problem via the decentralized robust control for nonlinear uncertain large-scale systems that have delay in both state and control input is considered. Sufficient conditions for the existence of guaranteed cost controllers are given in terms of linear matrix inequality (LMI). It is shown that the decentralized local state feedback controllers can be obtained by solving the LMI.  相似文献   

9.
This paper deals with the problem of designing output feedback controllers for linear uncertain continuous-time and discrete-time systems with circular pole constraints. The uncertainty is assumed to be norm bounded and enters into both the system state and input matrices. We focus on the design of a dynamic output feedback controller that, for all admissible parameter uncertainties, assigns all the closed-loop poles inside a specified disk. It is shown that the problem addressed can be recast as a convex optimization problem characterized by linear matrix inequalities (LMI); therefore, an LMI approach is developed to derive the necessary and sufficient conditions for the existence of all desired dynamic output feedback controllers that achieve the specified circular pole constraints. An effective design procedure for the expected controllers is also presented. Finally, a numerical example is provided to show the usefulness and applicability of the present approach.  相似文献   

10.
This article studies a guaranteed cost control problem for a class of time-delay chaotic systems. Attention is focused on the design of memory state feedback controllers such that the resulting closed-loop system is asymptotically stable and an adequate level of performance is also guaranteed. Using the Lyapunov method and LMI (linear matrix inequality) framework, two criteria for the existence of the controller are derived in terms of LMIs. A numerical example is given to illustrate the proposed method.  相似文献   

11.
This paper considers the problem of robust stabilization via dynamic output feedbackcontrollers for uncertain two-dimensional continuous systems described by the Roesser's state space model. The parameter uncertainties are assumed to be norm-bounded appearing in all the matrices of the system model. A sufficient condition for the existence of dynamic output feedback controllers guaranteeing the asymptotic stability of the closed-loop system for all admissible uncertainties is proposed. A desired dynamic output feedback controller can be constructed by solving a set of linear matrix inequalities. Finally, an illustrative example is provided to demonstrate the applicability and effectiveness of the proposed method.  相似文献   

12.
The linear state feedback synthesis problem for uncertain linear systems with state and control constraints is considered. We assume that the uncertainties are present in both the state and input matrices and they are bounded. The main goal is to find a linear control law assuring that both state and input constraints are fulfilled at each time. The problem is solved by confining the state within a compact and convex positively invariant set contained in the allowable state region.It is shown that, if the controls, the state, and the uncertainties are subject to linear inequality constraints and if a candidate compact and convex polyhedral set is assigned, a feedback matrix assuring that this region is positively invariant for the closed-loop system is found as a solution of a set of linear inequalities for both continuous and discrete time design problems.These results are extended to the case in which additive disturbances are present. The relationship between positive invariance and system stability is investigated and conditions for the existence of positively invariant regions of the polyhedral type are given.The author is grateful to Drs. Vito Cerone and Roberto Tempo for their comments.  相似文献   

13.
This paper is concerned with the robust stabilization problem for a class of linear uncertain stochastic systems with Markovian switching. The uncertain stochastic system with Markovian switching under consideration involves parameter uncertainties both in the system matrices and in the mode transition rates matrix. New criteria for testing the robust stability of such systems are established in terms of bi-linear matrix inequalities (BLMIs), and sufficient conditions are proposed for the design of robust state-feedback controllers. A numerical example is given to illustrate the effectiveness of our results.  相似文献   

14.
In this article, the problem of reliable gain‐scheduled H performance optimization and controller design for a class of discrete‐time networked control system (NCS) is discussed. The main aim of this work is to design a gain‐scheduled controller, which consists of not only the constant parameters but also the time‐varying parameter such that NCS is asymptotically stable. In particular, the proposed gain‐scheduled controller is not only based on fixed gains but also the measured time‐varying parameter. Further, the result is extended to obtain a robust reliable gain‐scheduled H control by considering both unknown disturbances and linear fractional transformation parametric uncertainties in the system model. By constructing a parameter‐dependent Lyapunov–Krasovskii functional, a new set of sufficient conditions are obtained in terms of linear matrix inequalities (LMIs). The existence conditions for controllers are formulated in the form of LMIs, and the controller design is cast into a convex optimization problem subject to LMI constraints. Finally, a numerical example based on a station‐keeping satellite system is given to demonstrate the effectiveness and applicability of the proposed reliable control law. © 2014 Wiley Periodicals, Inc. Complexity 21: 214–228, 2015  相似文献   

15.
The existence of cycles of the second kind was considered for uncertain pendulum-like systems with several nonlinearities. On the basis of the Kalman–Yakubovich–Popov (KYP) lemma, linear matrix inequality (LMI) conditions guaranteeing the existence of cycles of the second kind for such nonlinear systems under parameter uncertainties are established. By virtue of these results, an interesting conclusion is reached: that the synthesis problem ensuring the existence of cycles of the second kind for such an uncertain nonlinear system can be converted into a synthesis problem for a system without uncertainties. A concrete application to a synchronous machine demonstrates the validity of the proposed approach.  相似文献   

16.
This paper addresses the stability analysis problem for stochastic neural networks with parameter uncertainties and multiple time delays. The delays are time varying, and the parameter uncertainties are assumed to be norm bounded. A sufficient condition is derived such that for all admissible uncertainties, the considered neural network is globally exponentially stable in the mean square. The stability criterion is formulated by means of the feasibility of a linear matrix inequality (LMI), which can be easily checked in practice. Finally, a numerical example is provided to illustrate the proposed result.  相似文献   

17.
This paper studies the problem of H -control for linear systems with Markovian jumping parameters. The jumping parameters considered here are two separable continuous-time, discrete-state Markov processes, one appearing in the system matrices and one appearing in the control variable. Our attention is focused on the design of linear state feedback controllers such that both stochastic stability and a prescribed H -performance are achieved. We also deal with the robust H -control problem for linear systems with both Markovian jumping parameters and parameter uncertainties. The parameter uncertainties are assumed to be real, time-varying, norm-bounded, appearing in the state matrix. Both the finite-horizon and infinite-horizon cases are analyzed. We show that the control problems for linear Markovian jumping systems with and without parameter uncertainties can be solved in terms of the solutions to a set of coupled differential Riccati equations for the finite-horizon case or algebraic Riccati equations for the infinite-horizon case. Particularly, robust H -controllers are also designed when the jumping rates have parameter uncertainties.  相似文献   

18.
This article investigates the robust reliable control problem for a class of uncertain switched neutral systems with mixed interval time‐varying delays. The system under study involves state time‐delay, parameter uncertainties and possible actuator failures. In particular, the parameter uncertainties is assumed to satisfy linear fractional transformation formulation and the involved state delay are assumed to be randomly time varying which is modeled by introducing Bernoulli distributed sequences. The main objective of this article is to obtain robust reliable feedback controller design to achieve the exponential stability of the closed‐loop system in the presence of for all admissible parameter uncertainties. The proposed results not only applicable for the normal operating case of the system, but also in the presence of certain actuator failures. By constructing an appropriate Lyapunov–Krasovskii functional, a new set of criteria is derived for ensuring the robust exponential stability of the closed‐loop switched neutral system. More precisely, zero inequality approach, Wirtinger's based inequality, convex combination technique and average dwell time approach are used to simplify the derivation in the main results. Finally, numerical examples with simulation result are given to illustrate the effectiveness and applicability of the proposed design approach. © 2015 Wiley Periodicals, Inc. Complexity 21: 224–237, 2016  相似文献   

19.
李彩娜  崔宝同 《应用数学》2007,20(2):361-369
研究了带有中立和离散滞后的不确定中立系统的鲁棒无源控制.设计了使不确定时滞中立系统鲁棒稳定和无源的状态反馈控制器.通过线性矩阵不等式和Lyapunov函数,在系统的时间滞后和不确定参数范数有界的约束条件下,给出了系统无源稳定的条件和期望的状态反馈控制器的表达式.最后给出的数值例子说明了设计方法的有效性.  相似文献   

20.
The stabilization problem for a class of discrete-time systems with time-varying delay is investigated. By constructing an augmented Lyapunov function, some sufficient conditions guaranteeing exponential stabilization are established in forms of linear matrix inequality (LMI) technique. When norm-bounded parameter uncertainties appear in the delayed discrete-time system, a delay-dependent robust exponential stabilization criterion is also presented. All of the criteria obtained in this paper are strict linear matrix inequality conditions, which make the controller gain matrix can be solved directly. Three numerical examples are provided to demonstrate the effectiveness and improvement of the derived results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号