首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
La1−x(PO3)3:Tbx3+ (0<x0.6) were prepared using solid-state reaction. The vacuum ultraviolet (VUV) excitation spectrum of La0.55(PO3)3:Tb0.453+ indicates that the absorption of (PO3)33− groups locates at about 163 and 174 nm and the absorption bands of (PO3)33− groups (174 nm) and La3+–O2− (200 nm) and Tb3+ (213 nm) overlap each other. These results imply that the (PO3)33− groups can efficiently absorb the excited energy around 172 nm and transfer the energy to Tb3+. Under 172 nm excitation, the optimal photoluminescence (PL) intensity is obtained when Tb concentration reaches 0.45 and is about 71% of commercial phosphor Zn1.96SiO4:0.04 Mn2+ with chromaticity coordinates of (0.343, 0.578) and the decay time of about 4.47 ms.  相似文献   

2.
We synthesized uniform-sized nanorods of iron–nickel phosphides from the thermal decomposition of metal–phosphine complexes. Uniform-sized (FexNi1−x)2P nanorods (0x1) of various compositions were synthesized by thermal decomposition of Ni–trioctylphosphine (TOP) complex and Fe–TOP complex. By measuring magnetic properties, we found that blocking temperature and coercive field depend on Ni content in the nanorods. Both parameters were more sensitive to doping compared with bulk samples.  相似文献   

3.
We report the preparation and stability of ScVO3.5+x and the novel phase InVO3.5+x. AVO3.5+x (A=Sc, In) defect fluorite structures are formed as metastable intermediates during the topotactic oxidation of AVO3 bixbyites. The oxidation pathway has been studied in detail by means of thermogravimetric/differential thermal analysis and in-situ powder X-ray diffraction. The oxidation of the bixbyite phase follows a topotactic pathway at temperatures between 300 and 400 °C in air/carbon dioxide. The range of accessible oxygen stoichiometries for the AVO3.5+x structures following this pathway are 0.00x0.22. Rietveld refinements against powder X-ray and neutron data revealed that InVO3.54 and ScVO3.70 crystallize in the defect fluorite structure in space group Fm-3 m (227) with a=4.9863(5) and 4.9697(3)Å, respectively with A3+/V4+ disorder on the (4a) cation site. Powder neutron diffraction experiments indicate clustering of oxide defects in all samples. Bulk magnetic measurements showed the presence of V4+ and the absence of magnetic ordering at low temperatures. Powder neutron diffraction experiments confirmed the absence of a long range ordered magnetic ground state.  相似文献   

4.
A recently developed experimental and theoretical procedure is used in order to calculate the magnitude and anisotropy of interaction between a lanthanide and a 3d-metal ion. The general formula of the molecular compounds is [Ln(H2O)3(dmf)4(μ-CN)Fe–(CN)5] · nH2O where 1  n  1,5 and dmf = N,N′-dimethylformamide, abbreviated as [LnFe] from now on. The main parts of this procedure are (a) the evaluation of the effective g-parameters of the lanthanide ion with the help of EPR measurements. (b) The use of dual mode EPR spectroscopy to define the anisotropic exchange interactions with the help of an anisotropic Hamiltonian model. (c) Use of the same magnetic model to fit magnetization and susceptibility data in order to verify the EPR findings.It was possible to define some trends concerning the exchange components of the [DyFe] dimer according to which the antiferromagnetic isotropic exchange constant is smaller than 4 cm−1 and the anisotropic components are [DexcEexc] = [6(1), 0.0] cm−1. Also for the case of [TmFe] and [YbFe] dimers the antiferromagnetic isotropic exchange constant is smaller than 0.3 cm−1 while the anisotropic components are [DexcEexc] = [12.0, 0.0] cm−1 and [DexcEexc] = [0.4(1), 0.0] cm−1, respectively.  相似文献   

5.
n-Type (Bi2Te3)0.9–(Bi2−xCuxSe3)0.1 (x=0–0.2) alloys with Cu substitution for Bi were prepared by spark plasma-sintering technique and their structural and thermoelectric properties were evaluated. Rietveld analysis reveals that approximate 9.0% of Bi atomic sites are occupied by Cu atoms and less than 4.0 wt% second phase Cu2.86Te2 precipitated in the Cu-doped parent alloys. Measurements show that an introduction of a small amount of Cu (x0.1) can reduce the lattice thermal conductivity (κL), and improve the electrical conductivity and Seebeck coefficient. An optimal dimensionless figure of merit (ZT) value of 0.98 is obtained for x=0.1 at 417 K, which is obviously higher than those of Cu-free Bi2Se0.3Te2.7 (ZT=0.66) and Ag-doped alloys (ZT=0.86) prepared by the same technologies.  相似文献   

6.
PbMn(SO4)2 has been synthesized in an evacuated quartz tube. The nuclear and magnetic crystal structures have been determined using powder X-ray and neutron diffraction. This material crystallizes in the enantiomorphic space group pair P41212(92) and P43212(96), forming a double-helical arrangement of Pb2+ and Mn2+ cations. The Mn2+O6 octahedra are distorted. Each 3d5 Mn2+ has four nearest-neighbors and four next-nearest-neighbors adopting a frustrating arrangement. The compound orders antiferromagnetically at 5.5 K. Field dependent specific heat and magnetization measurements show that TN is suppressed to 3.3 K when μ0H=9 T.  相似文献   

7.
We have investigated the molecular structure and conformation of diethylmethylamine, C(4)H3C(2)H2N(1)[CH3]C(3)H2C(5)H3, by gas electron diffraction and vibrational spectroscopy with the aid of theoretical calculations. Diffraction data are consistent with a conformational mixture of 35(14)% tt + 27(14)% g+t + 20(17)% gt + 18(23)% g+g+ where the numbers in parentheses denote three times the standard errors (3σ). Normal-coordinate analysis based on B3LYP/6-311+G** calculations supports the existence of the four conformers. The dihedral angle 1(C4C2N1C3) (= −2(C5C3N1C2)) of the tt conformer was 170(4)° whereas the 1 and 2 values of the other conformers were fixed at the B3LYP/6-311++G(2df,p) values: 72.4° and −163.3° for the g+t, −66.0° and −158.2° for the gt, and 60.3° and 63.5° for the g+g+. Average values of the structural parameters (rg/Å and α/°) with 3σ are: r(N–C) = 1.462(2), r(C–C) = 1.523(3), r(C–H) = 1.113(2), CNC = 111.6(5), NCC = 114.5(5), NCH/CCHMe = 110.6(5).  相似文献   

8.
The polar intermetallic compound Ba5Ti12Sb19+x (x0.2) has been synthesized by reaction of the elements. Single-crystal X-ray diffraction analysis revealed that it adopts a new structure type (Ba5Ti12Sb19.102(6), space group , Z=2, a=12.4223(11) Å, V=1916.9(3) Å3). The set of Ba and Sb sites corresponds to the structure of Cu9Al4, a γ-brass type with a primitive cell. A complex three-dimensional framework of Ti atoms, in the form of linked planar Ti9 clusters, is stuffed within the γ-brass-type Ba–Sb substructure. Notwithstanding its relationship to the γ-brass structure, the compound does not appear to conform to the Hume–Rothery electron concentration rules. Band structure calculations on an idealized Ba5Ti12Sb19 model suggest that the availability of bonding states above the Fermi level is responsible for the partial occupation, but only to a limited degree, of an additional Sb site within the structure. Magnetic measurements indicated Pauli paramagnetic behaviour.  相似文献   

9.
Zinc triflate (Zn(CF3SO3)2)-doped sol–gel derived di-urea cross-linked POE/siloxane ormolytes (designated as di-ureasils) with ∞>n1 (where the salt content is expressed as n, the molar ratio of oxyethylene moieties to Zn2+ ions) were investigated. The hybrids with n5 are entirely amorphous; those with n>10 are thermally stable up to approximately 305 °C. The siliceous network of representative samples (n=200 and 10) is essentially composed of (SiO)3Si(CH2)-environments and is thus highly branched. The distance between the structural units in samples with 200n10 and n7 is 4.2 and 4.3 Å, respectively. The estimated interdomain distance is 11 and 13 Å for xerogels with 200n20 and n10, respectively. At n=1 a crystalline POE/Zn(CF3SO3)2 complex of unknown stoichiometry is formed. The conductivity maxima are located at n=60 () and n=20 () at 30 and 100 °C, respectively.  相似文献   

10.
Polycrystalline samples of the Lu1−xLaxMn2O5 solid solution system were synthesized under moderate conditions for compositions with x up to 0.815. Due to the large difference in ionic size between Lu3+ and La3+, significant changes in lattice parameters and severe lattice strains are present in the solid solution. This in turn leads to the composition dependent thermal stability and magnetic properties. It is found that the solid solution samples with x≤0.487 decompose at a single well defined temperature, while those with x≥0.634 decompose over a temperature range with the formation of intermediate phases. For the samples with x≤0.487, the primary magnetic transition occurs below 40 K, similar to LuMn2O5 and other individual RMn2O5 (R=Bi, Y, and rare earth) compounds. In contrast, a magnetic phase with a 200 K onset transition temperature is dominant in the samples with x≥0.634.  相似文献   

11.
Solvent effect on the νc frequency of CH stretching vibration of the blue shifted F3CH…FCD3 complex has been studied in liquefied N2, CO, Ar, Kr and Xe. In the case of Xe, the spectroscopic measurements have also been extended to the solid state. It was found that the νc position of the complex in the solutions studied lowers with respect to the value in the gas phase. In liquid Xe, characterized by the largest permittivity, this effect reaches its maximum value of −14.5 cm−1. The νc frequency begins to grow again just below the freezing point of Xe, where a noticeable (15%) increase of the density of Xe occurs. The experimental results obtained for the liquid phase have been analyzed in the framework of the Onsager-like reaction field model and Polarizable Continuum Model (PCM) implemented into a standard Gaussian 98 Program.  相似文献   

12.
Excitation spectra of Na fluorescence in mixtures with CF4 display a new band shifted by the energy of one-vibrational quantum of the IR active ν3-mode of CF4 (1281 cm−1) from Na 3d states. This band is attributed to a Na(3s)CF4(ν3 = 0) → Na(3d)CF4(ν3 = 1) transition and its intensity is explained by coupling with Na(4p)CF4(v3 = 0) resonance state which lies  180 cm−1 below in energy. An analogous satellite of the Na 6p state combined with the same vibration and lying close to the Na 7p state is reported and discussed.  相似文献   

13.
Three new hybrid crystals of 2-aminophenol-HClO4 (2-AP-HClO4, 1), 3-aminophenol-HClO4 (3-AP-HClO4, 2) and 4-aminophenol-HClO4 (4-AP-HClO4, 3) were obtained and their crystal structures determined. The 1 crystallises in centrosymmetric space group C2/c of monoclinic system while the other two (2 and 3) crystallise in the non-centro symmetric space group P21 and P212121, respectively. The oppositely charged units of the crystals, i.e. positively charged 2-APH+, 3-APH+ and 4-APH+ and ClO4, interact via weak N+–HO and O–HO hydrogen bonds forming 3D-supramolecular network. Relative to KDP the SHG efficiencies are 0.62 for 2 and 0.33 for 3, measured at 1064 nm using the Kurtz–Perry method.  相似文献   

14.
An interaction between humic acid, an organic part of soil and mercury was studied by Fourier transform infrared spectroscopy (FTIR) and by ICP-AES analysis under given pH and concentration conditions. First the spectroscopic model was validated on the interaction of simple molecules representing the structural components of humic acid such as benzoic acid, catechol and salicylic acid with mercury. The interaction of carboxylic parts of humic acid with mercury is very interesting and easily characterised by infrared spectroscopy, an ideal mean for molecular study. Under the salt form (commercial humic acid Fluka TM: FHA), humic acid reacts with mercury in a different way from its acid form (FHA purified noted PFHA) and the Leonardite (LHA). Because of the straightforward exchange between Na+, Ca2+ and Hg2+, fixation of the latter is much more important with the salt form (FHA). However, this reaction is reduced under the acid form (PFHA, LHA) because the exchange with protons is difficult. The effect of this exchange was studied by FTIR showing the intensity decrease of νCO (COOH), the carboxylic functional group band of the acid, and the shifting of νas (COO), the carboxylate functional group band under given pH and mercury conditions. For the FHA salt form, the characteristic band νCO (COOH) represented by a shoulder did not evolute, whereas the corresponding band to νas (COO) strongly shifted (40 cm−1) for a maximum Hg2+ concentration (1 g l−1). On the other hand, for the acid form (PFHA, LHA), the intense band of νCO (COOH) disappeared proportionally to the increase of Hg2+concentration and the νas (COO) band moved for about 20 cm−1. The same results were reached with pH variations. Our results were confirmed by ICP-AES mercury analysis. This study shows that humic acids react differently according to their chemical and structural state.  相似文献   

15.
Li[Li0.23Co0.3Mn0.47]O2 cathode material was prepared by a sol–gel method. The material had a primary particle size of about 100 nm, covered by a 30 Å of Li2CO3 layer. The material showed promising electrochemical performance when cycled up to 3C rate. The electrochemical kinetics of the first charge was much slower than that of the second charge, due to the complex electrochemical process which involved not only Li+ diffusion but also release of oxygen. By taking account of this, the material was pre-charged very slowly (C/50) in the first cycle. This led to excellent electrochemical performance in the following cycles. For instance, the 1C-rate capacity increased to 168 mA h g−1 after 50 cycles, comparing with the 145 mA h g−1 obtained without pre-charging.  相似文献   

16.
This work reports on an electrochemical system which allows the control of surface wettability properties by voltage induced changes in contact angle (Θ) of ΔΘ  50°. For this we used conductive TiO2 nanotubular layers that were modified with ferrocene coupled to the TiO2 surface via triethoxysilane. To enhance the hydrophobic character of the nanotubular TiO2 surface, also mixed organic monolayers namely perfluorotriethoxysilane, were explored. Formation of the ferrocene and mixed organic monolayer was confirmed by X-ray-photoelectron-spectroscopy (XPS). Contact angle combined with electrochemical measurements show that ferrocene in these monolayers can successfully be switched from Fe2+ to Fe3+ and that this change in the redox state considerably alters the wetting properties. Using a conductive nanotube substrate allows us to amplify this change by a factor of more than 10, and thus this surface can be used to trigger significant wetting alterations.  相似文献   

17.
By analyzing EPR and optical spectra, the local lattice structures of (NiF6)4− clusters in perovskite fluorides RbMF3 (M = Cd2+, Ca2+, Mg2+) series in tetragonal and trigonal ligand field are studied. A compression distortion relative to the regular octahedron for the RbCdF3:Ni2+ and RbCaF3:Ni2+ systems is determined. Furthermore, on the basis of the complete energy matrices we found that ZFS parameter D dependence on spin–orbit coupling coefficient ζ is not a strictly quadratic relation as shown by the fourth-order perturbation formula. Finally, the curves of g versus k and g versus k for these three systems are plotted which satisfy an approximately linear relation.  相似文献   

18.
The DMol3 calculations, based on density functional theory (DFT), have been employed to investigate the interactions between Cu2+ and chitin/chitosan residues. The possible initial conformations were optimized at the generalized gradient approximation (GGA) level, with spin unrestricted approach, symmetric unrestriction, doublet multiplicity and BLYP/DND methods. For all initial complexes considered, the Cu2+ was completed with H2O and/or OH groups to neutralize the initial complexes with hexacoordination geometries. The tendency of ligands to coordinate with Cu2+ is NH2 > C3OH > H2O > NHCOCH3, suggesting that amine groups (NH2) on chitosan prefer to bind Cu2+ and acetamide groups (NHCOCH3) on chitin lose their coordination with Cu2+ in aqueous solution. The geometries of bridge and pendant models have been comparatively analyzed. The results show that bridge model is more favorable than pendant model. In terms of the optimized geometries, the initial hexacoordination structures of Cu2+ designed seem more reasonable than initial tetracoordination ones designed.  相似文献   

19.
Upon addition of permanganate to a solution of tryptophan (Trp), yellow-brown color species appears within the time of mixing of tryptophan in absence and presence of cetyltrimethylammonium bromide (CTAB), which was stable for some days. Spectroscopic and kinetic evidences suggest the formation of water-soluble colloidal MnO2 as the most stable reduction product of MnO4. Carbon dioxide and ammonia are not formed as the oxidation products. Carbon–carbon double bond of indole moiety of Trp is responsible for the fast reduction of permanganate. Cetyltrimethylammonium bromide catalyses the permanganate oxidation of Trp with a rate enhancement of ca. 200-fold. Sub- and postmicellar catalytic effect of CTAB ascribed to the association/incorporation/solubilization of both reactants (MnO4 and Trp) with the CTAB aggregates and into the Stern layer of cationic micelles. Quantitative kinetic analysis of the rate constant–[CTAB] data has been performed on the basis of modified pseudo-phase model of the micelles. A comparison was made of the oxidation rates of different amino acids by permanganate. The order of the effectiveness was as follows: tryptophan  tyrosine  phenylalanine.  相似文献   

20.
Dynamic interfacial tension between aqueous solutions of 3-dodecyloxy-2-hydroxypropyl trimethyl ammonium bromide (R12HTAB) and n-hexane were measured using the spinning drop method. The effects of the R12HTAB concentration (the concentration below the CMC) and temperature on the dynamic interfacial tension have been investigated; the reason of the change of dynamic interfacial tension with time has been discussed. The effective diffusion coefficient, Da, and the adsorption barrier, a, have been obtained from the experimental data using the extended Word–Tordai equation. The results show that the dynamic interfacial tension becomes smaller while a becomes higher with increasing R12HTAB concentration in the bulk aqueous phase. Da decreases from 5.56 × 10−12 m−2 s−1 to 0.87 × 10−12 m−2 s−1 while a increases from 5.41 kJ mol−1 to 7.74 kJ mol−1 with the increase of concentration in the bulk solution of R12HTAB from 0.5 × 10−3 mol dm−3 to 4 × 10−3 mol dm−3. Change of temperature affects the adsorption rate through altering Da and a. The value of Da increases from 5.56 × 10−12 m−2 s−1 to 13.98 × 10−12 m−2 s−1 while that of a decreases from 5.41 kJ mol−1 to 5.07 kJ mol−1 with temperature ascending from 303 K to 323 K. The adsorption of surfactant from the bulk phase into the interface follows a mixed diffusion–activation mechanism, which has been discussed in the light of interaction between surfactant molecules, diffusion and thermo-motion of molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号