首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sunto In questo lavoro si studia la propagazione di un'onda gravitazionale nel vuoto, nell'approssimazione dell'ottica geometrica. Viene esaminato il tensore di Weyl dell'onda all'ordine zero e all'ordine uno della serie che rappresenta l'approssimazione dell'ottica geometrica. Questi termini sono gli unici invarianti per le trasformazioni infinitesime che preservano la forma dell'espansione del tensore metrico (trasformazioni di gauge). Perciò sono gli unici ad avere un significato fisico, cioè ad essere misurabili indipendentemente dalla convergenza della serie che li definisce. Viene caratterizzato il tipo algebrico del tensore di Weyl a questi due ordini in termini degli scalari ottici associati alla congruenza dei raggi su cui l'onda si propaga.

Entrata in Redazione l'8 luglio 1975.  相似文献   

2.
We consider cohomological and Poisson structures associated with the special tautological subbundles $TB_{W_{1,2, \ldots n} }$ for the Birkhoff strata of the Sato Grassmannian. We show that the tangent bundles of $TB_{W_{1,2, \ldots n} }$ are isomorphic to the linear spaces of two-coboundaries with vanishing Harrison cohomology modules. A special class of two-coboundaries is provided by a system of integrable quasilinear partial differential equations. For the big cell, it is the hierarchy of dispersionless Kadomtsev-Petvishvili (dKP) equations. We also demonstrate that the families of ideals for algebraic varieties in $TB_{W_{1,2, \ldots n} }$ can be viewed as Poisson ideals. This observation establishes a relation between families of algebraic curves in $TB_{W_{\hat S} }$ and coisotropic deformations of such curves of zero and nonzero genus described by hierarchies of systems of hydrodynamic type; the dKP hierarchy is such a hierarchy. We note the interrelation between cohomological and Poisson structures.  相似文献   

3.
Si danno risposte, per le principali classiP di spazi topologici separati, al seguente problema: “SiaX uno spazio topologico spezzabile sulla classeP. È vero o no cheXP?”. In particolare si studia il problema per le classiP of spaziT i,ρ (i=2,3,4,5), sotto particolari tipi di spezzabilità.  相似文献   

4.
Si considera una varietà neutra \(\tilde M\) di dimensione 2m munita di una struttura conforme simplettica \(CS_p \left( {2m; R} \right) = \left( {\tilde \Omega , \tilde \upsilon } \right)\) . Vengono studiati i differenti problemi concernenti gli automorfismi infinitesimali della 2-forma quasi simplettica \(\tilde \Omega \) . Inoltre vengono formulate alcune proprietà di un fogliettamento con isotropoF c su \(\tilde M\) .  相似文献   

5.
Galkina  S. Yu. 《Mathematical Notes》2001,70(5-6):733-743
In this paper, we study the behavior of the Fourier--Haar coefficients $a_{m_1 , \ldots ,m_n } \left( f \right)$ of functions $f$ Lebesgue integrable on the $n$ -dimensional cube $D_n = \left[ {0,1} \right]^n $ and having a bounded Vitali variation $V_{D_n } f$ on it. It is proved that $$\sum\limits_{m_1 = 2}^\infty \cdots \sum\limits_{m_n = 2}^\infty {\left| {a_{m_1 , \ldots ,m_n } \left( f \right)} \right|} \leqslant \left( {\frac{{2 + \sqrt 2 }}{3}} \right)^n {\text{ }}.{\text{ }}V_{D_n } f$$ and shown that this estimate holds for some function of bounded finite nonzero Vitali variation.  相似文献   

6.
Sunto In questo lavoro si prova che ogni spazio analitico reale coerente X, (con eventuali elementi nilpotenti), ammette un complessificato ed inoltre X ha in un sistema fondamentale di intorni che sono spazi di Stein. Da questo risultato segue la validità dei teoremi A e B per gli spazi analitici reali coerenti. Sia Vm una varietà complessa di dimensione m, σ : Vm → Vm un’antiinvoluzione, il il luogo dei punti fissi di σ è vuoto, oppure è una sottovarietà analitica reale di dimensione m. Da questo fatto e dal primo risultato si deducono dei teoremi di immersione degli spazi analitici reali in Rn. Si prova infine che per ogni spazio analitico reale coerente (senza elementi nilpotenti) esiste una decomposizione in componenti irriducibili globali ed una normalizzazione. Lavoro eseguito nel Gruppo di ricerca n. 35 del Comitato Nazionale per la Matematica del Consiglio Nazionale delle Ricerche per l’anno 1965–66.  相似文献   

7.
We show that there do not exist computable functions f 1(e, i), f 2(e, i), g 1(e, i), g 2(e, i) such that for all e, iω, (1) $ {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)} \leqslant _{{\rm T}} {\left( {W_{e} - W_{i} } \right)}; $ (2) $ {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)} \leqslant _{{\rm T}} {\left( {W_{e} - W_{i} } \right)}; $ (3) $ {\left( {W_{e} - W_{i} } \right)} \not\leqslant _{{\rm T}} {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)} \oplus {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)}; $ (4) $ {\left( {W_{e} - W_{i} } \right)} \not\leqslant _{{\rm T}} {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)}{\text{unless}}{\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\emptyset};{\text{and}} $ (5) $ {\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)}{\text{unless}}{\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\emptyset}. $ It follows that the splitting theorems of Sacks and Cooper cannot be combined uniformly.  相似文献   

8.
Let ${{\mathbb H}_n, n \geq 1}$ , be the near 2n-gon defined on the 1-factors of the complete graph on 2n?+?2 vertices, and let e denote the absolutely universal embedding of ${{\mathbb H}_n}$ into PG(W), where W is a ${\frac{1}{n+2} \left(\begin{array}{c}2n+2 \\ n+1\end{array}\right)}$ -dimensional vector space over the field ${{\mathbb F}_2}$ with two elements. For every point z of ${{\mathbb H}_n}$ and every ${i \in {\mathbb N}}$ , let Δ i (z) denote the set of points of ${{\mathbb H}_n}$ at distance i from z. We show that for every pair {x, y} of mutually opposite points of ${{\mathbb H}_n, W}$ can be written as a direct sum ${W_0 \oplus W_1 \oplus \cdots \oplus W_n}$ such that the following four properties hold for every ${i \in \{0,\ldots,n \}}$ : (1) ${\langle e(\Delta_i(x) \cap \Delta_{n-i}(y)) \rangle = {\rm PG}(W_i)}$ ; (2) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(x) \right) \right\rangle = {\rm PG}(W_0 \oplus W_1 \oplus \cdots \oplus W_i)}$ ; (3) ${\left\langle e \left( \bigcup_{j \leq i} \Delta_j(y) \right) \right\rangle = {\rm PG}(W_{n-i}\oplus W_{n-i+1} \oplus \cdots \oplus W_n)}$ ; (4) ${\dim(W_i) = |\Delta_i(x) \cap \Delta_{n-i}(y)| = \left(\begin{array}{c}n \\ i\end{array}\right)^2 - \left(\begin{array}{c}n \\ i-1\end{array}\right) \cdot \left(\begin{array}{c}n \\ i+1\end{array}\right)}$ .  相似文献   

9.
Si studiano le proprietà degli oggetti con comoltiplicazione (cioè co-H-oggetti) nelle categorie che ammettono un coprodotto e i funtori fra queste categorie. Si dimostra che questi funtori conservano le proprietà dei co-H-oggetti. Queste osservazioni generali si applicano inoltre ai seguenti esempi specifici di categorie e funtori: la categoria omotopica degli spazi puntati, la categoria delle algebre graduate commutative, la categoria delle algebre graduate associative, la categoria delle algebre di Lie graduate e la categoria dei gruppi. I funtori sono: il gruppo fondamentale, il funtore coomologia, il funtore omologia dello spazio di cammini chiusi di uno spazio e il funtore gruppo omoto pico. Si dimostra che in questi casi specifici si ottengono risultati classici ben noti.
Conferenza tenuta il 15 aprile 1996  相似文献   

10.
Sunto Si definiscono iperpiani ad inflessione di poligoni dello spazio reale proiettivo Ln di dimensione n e si dànno relazioni fra queste singolarità e gli spazi osculatori dei poligoni. Come applicazione dei risultati si dimostra che esiste un poligono unico d'ordine n i cui vertici sono n + 3 punti dati in posizione generica in Ln. Alla memoria di Guido Castelnuovo, nel primo centenario della nascita.  相似文献   

11.
Основной целью работ ы является обобщение одного результата Кратца и Т раутнера [4], известного для одном ерных функциональны х рядов, на кратные ряды. Этот рез ультат касается суммируемо сти функционального ряда почти всюду при слабых пред положениях. В частности, он примен им к суммируемости по Чезаро и по Риссу. Мы рассматриваемd-кр атный ряд $$\mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty c_{k_1 ,...,k_d } f_{k_1 ,...,k_d } (x), \mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty c_{k_1 ,...,k_d }^2< \infty $$ и предполагается, что функции \(f_{k_1 ,...,k_d } (x)\) интегрируе мы по пространству с полож ительной мерой и имеют почти вс юду ограниченные фун кции Лебега для метода суммирова ния Т. Метод Т определяетсяd-мерной матрицей \(T = \{ a_{m_1 ,...,m_d ;k_1 ,...,k_d } \} \) сл едующим образом: $$t_{m_1 ,...,m_d } (x) = \mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty a_{m_1 ,...,m_d ;k_1 ,...,k_d } c_{k_1 ,...,k_d } f_{k_1 ,...,k_d } (x).$$ Эти средние существу ют, поскольку мы предп олагаем, что \(a_{m_1 ,...,m_d ;k_1 ,...,k_d } = 0\) ,если max(k 1,...,k d) достаточно вели к (в зависимости, конеч но, отm 1,...,m d). При некоторых дополнительных усло виях на матрицуТ (см. (7)– (9) в разделе 3) устанавлива ется почти всюду регулярная схо димость средних \(t_{m_1 ,...,m_d } (x) \user2{} \user2{(}m_1 \user2{,}...\user2{,}m_d \user2{)} \to \infty \) . Как вспомогательный результат, в работе об общается теорема Алексича [1] о сх одимости почти всюду некоторы х подпоследовательн остей частных сумм функцио нального ряда.  相似文献   

12.
We study regularity results for solutions uHW 1,p (Ω) to the obstacle problem $$\int_\Omega \mathcal{A} \left( {x,\nabla _{\mathbb{H}^u } } \right)\nabla _\mathbb{H} \left( {v - u} \right)dx \geqslant 0 \forall v \in \mathcal{K}_{\psi ,u} \left( \Omega \right)$$ such that u ? ψ a.e. in Ω, where $xxx$ , in Heisenberg groups ? n . In particular, we obtain weak differentiability in the T-direction and horizontal estimates of Calderon-Zygmund type, i.e. $$\begin{gathered} T\psi \in HW_{loc}^{1,p} \left( \Omega \right) \Rightarrow Tu \in L_{loc}^p \left( \Omega \right), \hfill \\ \left| {\nabla _{\mathbb{H}\psi } } \right|^p \in L_{loc}^q \left( \Omega \right) \Rightarrow \left| {\nabla _{\mathbb{H}^u } } \right|^p \in L_{loc}^q \left( \Omega \right), \hfill \\ \end{gathered}$$ where 2 < p < 4, q > 1.  相似文献   

13.
We mainly study the existence of positive solutions for the following third order singular super-linear multi-point boundary value problem $$ \left \{ \begin{array}{l} x^{(3)}(t)+ f(t, x(t), x'(t))=0,\quad0 where \(0\leq\alpha_{i}\leq\sum_{i=1}^{m_{1}}\alpha_{i}<1\) , i=1,2,…,m 1, \(0<\xi_{1}< \xi_{2}< \cdots<\xi_{m_{1}}<1\) , \(0\leq\beta_{j}\leq\sum_{i=1}^{m_{2}}\beta_{i}<1\) , j=1,2,…,m 2, \(0<\eta_{1}< \eta_{2}< \cdots<\eta_{m_{2}}<1\) . And we obtain some necessary and sufficient conditions for the existence of C 1[0,1] and C 2[0,1] positive solutions by means of the fixed point theorems on a special cone. Our nonlinearity f(t,x,y) may be singular at t=0 and t=1.  相似文献   

14.
We investigate the regular convergence of the m-multiple series (*) $$\sum\limits_{j_1 = 0}^\infty {\sum\limits_{j_2 = 0}^\infty \cdots \sum\limits_{j_m = 0}^\infty {c_{j_1 ,j_2 } , \ldots j_m } }$$ of complex numbers, where m ≥ 2 is a fixed integer. We prove Fubini’s theorem in the discrete setting as follows. If the multiple series (*) converges regularly, then its sum in Pringsheim’s sense can also be computed by successive summation. We introduce and investigate the regular convergence of the m-multiple integral (**) $$\int_0^\infty {\int_0^\infty { \cdots \int_0^\infty {f\left( {t_1 ,t_2 , \ldots ,t_m } \right)dt_1 } } } dt_2 \cdots dt_m ,$$ where f : ?? + m → ? is a locally integrable function in Lebesgue’s sense over the closed nonnegative octant ?? + m := [0,∞) m . Our main result is a generalized version of Fubini’s theorem on successive integration formulated in Theorem 4.1 as follows. If fL loc 1 (?? + m ), the multiple integral (**) converges regularly, and m = p + q, where p and q are positive integers, then the finite limit $$\mathop {\lim }\limits_{v_{_{p + 1} } , \cdots ,v_m \to \infty } \int_{u_1 }^{v_1 } {\int_{u_2 }^{v_2 } { \cdots \int_0^{v_{p + 1} } { \cdots \int_0^{v_m } {f\left( {t_1 ,t_2 , \ldots t_m } \right)dt_1 dt_2 } \cdots dt_m = :J\left( {u_1 ,v_1 ;u_2 v_2 ; \ldots ;u_p ,v_p } \right)} , 0 \leqslant u_k \leqslant v_k < \infty } ,k = 1,2, \ldots p,}$$ exists uniformly in each of its variables, and the finite limit $$\mathop {\lim }\limits_{v_1 ,v_2 \cdots ,v_p \to \infty } J\left( {0,v_1 ;0,v_2 ; \ldots ;0,v_p } \right) = I$$ also exists, where I is the limit of the multiple integral (**) in Pringsheim’s sense. The main results of this paper were announced without proofs in the Comptes Rendus Sci. Paris (see [8] in the References).  相似文献   

15.
In this paper, the smallest number M which makes the equality $$ K_n (W_2^{L_r } (T),MW_2^{L_r } (T),L_2 (T)) = d_n (W_2^{L_r } (T),L_2 (T)) $$ valid, is established and the asymptotic order of $$ K_n (W_2^{L_r } (T),W_2^{L_r } (T),L_q (T)),1 \leqslant q \leqslant \infty $$ , is obtained, where $ W_2^{L_r } $ (T) is a periodic smooth function class which is determined by a linear differential operator, K n (·, ·, ·) and d n (·, ·) are the relative width and the width in the sense of Kolmogorov, respectively.  相似文献   

16.
Given polynomials f (x), g i (x), h j (x), we study how to minimize f (x) on the set $$S = \left\{ x \in \mathbb{R}^n:\, h_1(x) = \cdots = h_{m_1}(x) = 0,\\ g_1(x)\geq 0, \ldots, g_{m_2}(x) \geq 0 \right\}.$$ Let f min be the minimum of f on S. Suppose S is nonsingular and f min is achievable on S, which are true generically. This paper proposes a new type semidefinite programming (SDP) relaxation which is the first one for solving this problem exactly. First, we construct new polynomials ${\varphi_1, \ldots, \varphi_r}$ , by using the Jacobian of f, h i , g j , such that the above problem is equivalent to $$\begin{gathered}\underset{x\in\mathbb{R}^n}{\min} f(x) \hfill \\ \, \, {\rm s.t.}\; h_i(x) = 0, \, \varphi_j(x) = 0, \, 1\leq i \leq m_1, 1 \leq j \leq r, \hfill \\ \quad \, \, \, g_1(x)^{\nu_1}\cdots g_{m_2}(x)^{\nu_{m_2}}\geq 0, \, \quad\forall\, \nu \,\in \{0,1\}^{m_2} .\hfill \end{gathered}$$ Second, we prove that for all N big enough, the standard N-th order Lasserre’s SDP relaxation is exact for solving this equivalent problem, that is, its optimal value is equal to f min. Some variations and examples are also shown.  相似文献   

17.
    
Sunto In questa prima Memoria si definiscono gli spazi lineari metrici (o vettoriali, secondo ilFréchet) e le loro varietà lineari; in particolare gli iperpiani e le equazioni lineari che li rappresentano. Si estende poi il concetto di corpo convesso e la sua rappresentazione secondoMinkowski; si dimostra l'esistenza di un cono tangente in un punto del contorno. Seguono alcune osservazioni sugli spazi completi e separabili, sullo spazio duale ecc., e l'esame di numerosi esempi di spazi aventi come elementi successioni o funzioni.  相似文献   

18.
We introduce polynomials $B^n_{k}(\boldmath{x};\omega|q)$ of total degree n, where $\boldmath{k} = (k_1,\ldots,k_d)\in\mathbb N_0^d, \; 0\le k_1+\ldots+k_d\le n$ , and $\boldmath{x}=(x_1,x_2,\ldots,x_d)\in\mathbb R^d$ , depending on two parameters q and ω, which generalize the multivariate classical and discrete Bernstein polynomials. For ω=0, we obtain an extension of univariate q-Bernstein polynomials, introduced by Phillips (Ann Numer Math 4:511–518, 1997). Basic properties of the new polynomials are given, including recurrence relations, q-differentiation rules and de Casteljau algorithm. For the case d=2, connections between $B^n_{k}(\boldmath{x};\omega|q)$ and bivariate orthogonal big q-Jacobi polynomials—introduced recently by the first two authors—are given, with the connection coefficients being expressed in terms of bivariate q-Hahn polynomials. As limiting forms of these relations, we give connections between bivariate q-Bernstein and Dunkl’s (little) q-Jacobi polynomials (SIAM J Algebr Discrete Methods 1:137–151, 1980), as well as between bivariate discrete Bernstein and Hahn polynomials.  相似文献   

19.
Пусть Tn(f)={L1(f), ..., Ln(f)} — набор линейных функционал ов, заданных на простран стве \(C_{(r - 1)} (\parallel f\parallel _{C_{(r - 1)} } = \mathop {\max }\limits_{0 \leqq i \leqq r - 1} \parallel f^{(i)} \parallel _C );A_{n,r}\) — множество всех так их наборов функцио налов; С2n, 2 — множество всех н аборов из 2n функциона лов вида $$T_{2n} (f) = \{ f(x_1 ), \ldots ,f(x_n ),f'(x_1 ), \ldots ,f'(x_n )\}$$ и s: Еn→Е1. Доказано, что е слиW r множество всех 2π-периодических функ цийfεW∞0, 2πr, то приr=1,2,3,... ирε(1, ∞) и $$\begin{gathered} \mathop {\inf }\limits_{T_{2n} \in A_{2n,r} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \varphi _{n,r} \parallel _p \hfill \\ \mathop {\inf }\limits_{T_{2n} \in C_{2n,2} } \parallel \mathop {\inf }\limits_s \mathop {\sup }\limits_{f \in W_\infty ^r } |f( \cdot ) - s(T_{2n} ,f, \cdot )|\parallel _p = \parallel \parallel \varphi _{n,r} \parallel _\infty - \varphi _{n,r} \parallel _p , \hfill \\ \end{gathered}$$ где ?n,rr-й периодичес кий интеграл, в средне м равный нулю на периоде, от фун кции ?n, 0t=sign sinnt. При этом указан ы оптимальные методы приближенного вычис ления.  相似文献   

20.
Given n, N ≥ 1 we construct a set of points ${\lambda_1,{\ldots},\lambda_{N^n}\in{\mathbb D}^n}$ such that for each rational inner function f on ${{\mathbb D}^n}$ of degree less than N the Pick problem on ${{\mathbb D}^n}$ with data ${\lambda_1,{\ldots},\lambda_{N^n}}$ and ${f(\lambda_1),{\ldots},f(\lambda_{N^n})}$ has a unique solution. In particular, we construct a 1-dimensional inner variety V and show that the points ${\lambda_1,{\ldots},\lambda_{N^n}}$ may be chosen almost arbitrarily in ${V\cap{\mathbb D}^n}$ . Our results state that f is uniquely determined in the Schur class of ${{\mathbb D}^n}$ by its values on ${\lambda_1,{\ldots},\lambda_{N^n}}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号