首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 79 毫秒
1.
螺旋管内高压汽液两相强制对流沸腾传热试验   总被引:1,自引:0,他引:1  
螺旋管式蒸汽发生器或热交换器在核电站、直流锅炉和各种化工设备等领域中都有相当广泛的应用。在高压水回路上对螺旋管中汽液两相强制对流沸腾传热特性进行了试验研究,得到了立式上升流动螺旋管内过冷水紊流流动和过热蒸汽紊流流动时的放热系数。用修正L-M关系式整理了立式上升流动螺旋管内两相强制对流区放热系数,螺旋管在该区的放热系数大致范围为25-40 kw/(m2·℃)。  相似文献   

2.
本文实验研究了低质量流速(500~800 kg·m~(-2)·s~(-1))下的立式螺旋管临界热负荷,对沸腾传热恶化壁温特性和螺旋管临界热负荷影响因素进行分析.并同前人工作汇总,以流量,压力和临界干度为参数,建立了基于局部条件假设的立式螺旋管临界热负荷查询表(Look-Up-Table),共272个点.压力范围6.5~21 MPa,质量流速范围500~1800 kg·m~(-2)·s~(-1).  相似文献   

3.
卧式螺旋管内汽液两相流不稳定性试验研究   总被引:1,自引:0,他引:1  
本文在中、低压汽水试验台上对卧式螺旋管内汽液两相流动不稳定性进行了详细的试验研究,获得了各类脉动发生的界限及各主要参数对脉动的影响规律,并在无固次分析的基础上,给出了密度波脉动起始边界的预报关系式。  相似文献   

4.
螺旋管锅炉反应器管内汽液两相流压力降脉动研究   总被引:3,自引:0,他引:3  
本又根据闭式循环热动力推进系统中锅炉反应器的各种可能的航行方向及运行参数,对螺旋管内汽液两相流压力降脉动特性进行了系统的试验研究,首次区分了两类不同特征的压力降脉动并得到了各主要因素的影响现律和发生脉动的界限准则。  相似文献   

5.
在宽广的实验参数范围内(压力p=8~21 MPa,质量流速G=1200~4000 kg·m~(-2)·s~(-1),壁面热流密度q=0~1000 kW·m~(-2))对立式螺旋管内汽水两相流摩擦阻力特性进行了实验研究。实验段由内径为10 mm的不锈钢管弯制而成,其螺旋直径为301mm,节距为49 mm。通过研究,获得了压力、干度、质量流速及热流密度等参数对汽水两相摩擦阻力的影响规律;并在实验数据的基础上,采用Chisholm的B系数法,给出了一个适用于螺旋管高压高质量流速工况汽水两相摩擦阻力的计算关系式。  相似文献   

6.
螺旋管分离器中液固两相流颗粒相分布研究   总被引:3,自引:2,他引:3  
螺旋管分离器是一种高效低阻的新型液固/气液固分离装置,研究分离器内部相分布特征及影响因素具有重要意义。本文利用Malvern粒度仪和观察窗技术测量了分离器模型中水-砂两相流动的颗粒浓度和粒度分布,并且对具有相似结构和流动参数的平面组合方管液固两相流动进行了数值模拟。研究表明颗粒相分布是离心力、二次流和紊流扩散的综合结果:离心力使颗粒由内弯侧向外弯侧聚集,是实现分离的根本动力,颗粒越大,分离现象越显著;二次流对分离具有双重作用;紊流扩散不利于分离。液速越高,分离效果越好。颗粒平均浓度对浓度分布没有显著影响。  相似文献   

7.
螺旋管内气-液两相流截面含气率试验研究和理论模型   总被引:1,自引:1,他引:0  
1前言关于螺旋管内气-液两相截面含气率的预报是一个重要的课题。即使只考虑平均截面含气率,也有气液两相间的滑移、各相流速和气相沿流通截面的不均匀分布等影响因素。查阅有关文献[1,2],对螺旋管内气-液两相截面含气率的研究还很不够。因此,本文重点从二方面进行了研究。首先借助快速关闭球阀法,得出三根不同螺旋管平均截面含气率的试验测定结果,考查了螺旋升角和螺旋直径对其产生的影响;其次,按不同流型,依据“分相动量模型”和“漂移流率模型”、得出计算螺旋管内主要流型平均截面含气率的经验关系式。本文研究对象:三…  相似文献   

8.
建立了超音速汽液两相流激波过程的数学模型,得到了激波前后的流动关系,并对激波后的流动规律进行了初步分析,建立了两相扩压段的优化模型。研究结果表明,在激波后,流体压力上升,速度下降,与单相气体的正激波特性相似;其对应的音速与汽液两相流体的空泡率、压力及液相密度等因素有关。  相似文献   

9.
窄缝内汽液两相临界流实验研究   总被引:1,自引:0,他引:1  
本文实验研究了高过冷水在窄缝内形成的汽液两相临界流动现象,考察了水的泄漏率与容器内压、温度、流道几何尺寸等影响因素之间的关系,给出了一个简单的拟单相流预测关系式,和实验数据的比较表明,该关系式可以较好地预测高过冷水在窄缝内形成的气液两相临界流动现象.  相似文献   

10.
本文主要开展非均匀加热螺旋管内沸腾传热恶化特性实验研究。实验参数范围为:热流密度15~55 kW·m^-2;质量流速190~400 kg·m^-2·s^-1;压力0.8~1.1 MPa。实验包括一个均匀加热实验段及两个非均匀加热实验段,三个实验段尺寸一致,不均匀度分别为1.0,1.2和1.4。实验过程中共获得三种壁温飞升现象,而且发现随着质量流速及不均匀度的增大传热恶化位置逐渐向内侧管圈偏移,并由此导致非均匀加热螺旋管内初始烧干干度随着质量流速的变化规律与均匀加热螺旋管恰好相反。  相似文献   

11.
本文应用界面化学理论研究表面作用对分离式热管小螺旋管蒸发段管内流动和换热特性的影响。通过实验及分析,提出通过在一定范围内提高热管工作温度和添加润湿剂以降低水的表面张九提高管内壁的粗糙度以增强液膜的铺展性能。利用这两种方法可以有效地增强小螺旋管内壁面的润湿性能,从而提高管内换热性能.  相似文献   

12.
三维微肋螺旋管内流动沸腾流型与传热性能   总被引:4,自引:0,他引:4  
采用三维微肋螺旋管进行了制冷剂R134a在管内的流动沸腾传热与流型可视化实验。随着流量和干度的变化,流型可划分为泡状流、塞状流、分层波状流、间歇流以及环状流。在Taitel-Dukler流型图上给出了流型的分区及其转变曲线,讨论了螺旋管内两相流动流型转变的特性。传热实验揭示了质量流量、热流密度及蒸汽干度对传热性能的影响,三维微肋螺旋管的强化因子为1.5-2.1。  相似文献   

13.
垂直并联管内高压汽水两相流压力降型脉动的研究   总被引:2,自引:0,他引:2  
本文在宽广的参数范围内,对垂直并联管内高压汽水两相流压力降型脉动特性进行了试验研究,得出了系统参数对脉动起始点、周期和振幅的影响。根据两相流的均相模型,对压力降型脉动的周期和振幅进行了数值计算。此方法考虑了系统非线性的影响,与试验结果符合较好。  相似文献   

14.
卧式螺旋管内的沸腾临界后传热   总被引:1,自引:0,他引:1  
1引言螺旋管由于具有换热效率高、结构紧凑等优点,在各种换热设备中得到了广泛的应用.螺旋管卧式放置时重心低下,适用放航空、航海等航体设备。例如,在新型鱼雷闭式循环热动力系统中,卧式螺旋管圈是其锅炉反应器和凝结器的基本型式。在螺旋管直流式蒸汽发生器中,沸腾临界后(干涸区)传热是不可避免的现象。因此,研究临界后传热,具有十分重要的意义。前人对立式螺旋管内的沸腾传热恶化进行了大量的研究[‘-‘]。但目前对卧式螺旋管的研究相对较少,特别是高干度下的临界传热(干涸区传热),文献中很少见报导。本文对卧式螺旋管…  相似文献   

15.
垂直上升管内气液两相流流型鉴别研究   总被引:9,自引:0,他引:9  
本文以低压空气一水作介质,进行了垂直上升管内气液两相流流型鉴别的实验研究;采用沿垂直管局部轴向压差信号及压差信号的统计分析并借助高速闪光观测仪进行可视化观察鉴别流型。实验结果发现,利用压差的时域信号和信号的功率谱密度函数(PSD),可以客观地判别垂直上升管内泡状、弹状和环状三种主要流型。  相似文献   

16.
螺旋隔板花瓣管换热器的传热强化研究   总被引:4,自引:0,他引:4  
比较了螺旋用板花瓣管和螺旋隔板低肋管润滑油冷却器和空气冷却器的传热性能,实验结果表明,无论是作为油冷却器,还是作为空气冷却器,螺旋隔板花瓣换热器的综合传热性能明显优于螺旋隔板低肋管换热器,且螺旋隔板花瓣换热器还能节省30%以上的铜管重量.  相似文献   

17.
Results of an experimental investigation of heat and mass transfer and wall shear stress at gas-liquid flow in a vertical tube are presented. Local wall shear stress and mass transfer coefficients were measured by an electrochemical method. Experiments were performed in the range of Reynolds number variation with respect to liquid Rci, = 8.5 × 103-5.4 × 104, gas Reg = 3 × 103-1.4 × 105, pressure 0.1-1 MPa. The relationship between heat and mass transfer and wall shear at gas-liquid flows is shown to exist. The results of measuring heat and mass transfer coefficients are generalized by formulas applied to calculate heat and mass transfer in single-phase turbulent flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号