首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of oxygenation of several para-substituted phenyl methyl sulfides and sulfoxides with a series of 5-substituted and sterically hindered oxo(salen)chromium(V) complexes have been studied by a spectrophotometric technique. Though the reaction of sulfides follows simple second-order kinetics, sulfoxides bind strongly with the metal center of the oxidant and the oxygen atom is transferred from the oxidant-sulfoxide adduct to the substrate. The reduction potentials, E(red), of eight Cr(V) complexes correlate well with the Hammett sigma constants, and the reactivity of the metal complexes is in accordance with the E(red) values. The metal complexes carrying bulky tert-butyl groups entail steric effects. Organic sulfides follow a simple electrophilic oxidation mechanism, and the nonligated sulfoxides undergo electrophilic oxidation to sulfones using the oxidant-sulfoxide adduct as the oxidant. Sulfoxides catalyze the Cr(V)-salen complexes' oxygenation of organic sulfides, and the catalytic activity of sulfoxides is comparable to pyridine N-oxide and triphenylphosphine oxide. The rate constants obtained for the oxidation of sulfides and sulfoxides clearly indicate the operation of a pronounced electronic and steric effect in the oxygenation reaction with oxo(salen)chromium(V) complexes.  相似文献   

2.
The oxidation of a series of para-substituted phenyl methyl sulfides was carried out with several oxo(salen)iron (salen = N,N'-bis(salicylidine)ethylenediaminato) complexes in acetonitrile. The oxo complex [O=Fe(IV)(salen)](*+), generated from an iron(III) [bond] salen complex and iodosylbenzene, effectively oxidizes the organic sulfides to the corresponding sulfoxides. The formation of [O [double bond] Fe(IV)(salen)](*+) as the active oxidant is supported by resonance Raman studies. The kinetic data indicate that the reaction is first-order in the oxidant and fractional-order with respect to sulfide. The observed saturation kinetics of the reaction and spectral data indicate that the substrate binds to the oxidant before the rate-controlling step. The rate constant (k) values for the product formation step determined using Michaelis-Menten kinetics correlate well with Hammett sigma constants, giving reaction constant (rho) values in the range of -0.65 to -1.54 for different oxo(salen)iron complexes. The log k values observed in the oxidation of each aryl methyl sulfide by substituted oxo(salen)iron complexes also correlate with Hammett sigma constants, giving positive rho values. The substituent effect, UV-vis absorption, and EPR spectral studies indicate oxygen atom transfer from the oxidant to the substrate in the rate-determining step.  相似文献   

3.
The oxidation of 4‐substituted phenyl phenyl sulfides was carried out with several oxo(salen)manganese(V) complexes in MeCN/H2O 9 : 1. The kinetic data show that the reaction is first‐order each in the oxidant and sulfide. Electron‐attracting substituents in the sulfides and electron‐releasing substituents in salen of the oxo(salen)manganese(V) complexes reduce the rate of oxidation. A Hammett analysis of the rate constants for the oxidation of 4‐substituted phenyl phenyl sulfides gives a negative ρ value (ρ=?2.16) indicating an electron‐deficient transition state. The log k2 values observed in the oxidation of each 4‐substituted phenyl phenyl sulfide by substituted oxo(salen)manganese(V) complexes also correlate with Hammett σ constants, giving a positive ρ value. The substituent‐, acid‐, and solvent‐effect studies indicate direct O‐atom transfer from the oxidant to the substrate in the rate‐determining step.  相似文献   

4.
The kinetics of oxidation of 16 meta-, ortho-, and para-substituted anilines with nine oxo(salen)chromium(V) ions have been studied by spectrophotometric, ESIMS, and EPR techniques. During the course of the reaction, two new peaks with lambda(max) at 470 and 730 nm appear in the absorption spectrum, and these peaks are due to the formation of emeraldine forms of oligomers of aniline supported by the ESIMS peaks with m/z values 274 and 365 (for the trimer and tetramer of aniline). The rate of the reaction is highly sensitive to the change of substituents in the aryl moiety of aniline and in the salen ligand of chromium(V) complexes. Application of the Hammett equation to analyze kinetic data yields a rho value of -3.8 for the substituent variation in aniline and +2.2 for the substituent variation in the salen ligand of the metal complex. On the basis of the spectral, kinetic, and product analysis studies, a mechanism involving an electron transfer from the nitrogen of aniline to the metal complex in the rate controlling step has been proposed. The Marcus equation has been successfully applied to this system, and the calculated values are compliant with the measured values.  相似文献   

5.
Oxo(salen)chromium(V) complexes, [(salen)CrVO]+, oxidize organic sulfides selectively to sulfoxides in high yield. This oxygenation reaction is catalyzed by ligand oxides (LO's), pyridine N-oxide, 4-picoline N-oxide, 4-phenyl pyridine N-oxide and triphenylphosphine oxide. The rate is accelerated by 10-20 times with an increase in yield of sulfoxide in less reaction time. This catalytic activity is highly sensitive to the nature of the substituent in the phenyl ring of ArSMe and in the 3- and 5-position of the salen ligand. The reaction constant (ρ) value obtained with the ligand oxide catalyzed reaction is low compared to the value in the absence of LO. The strong binding and catalytic activity of ligand oxides on the oxo(salen)chromium(V) ion oxygenation is explained in terms of binding constants and a mechanism involving the electrophilic attack of [(salen)CrVO]+-LO adduct on the sulfur centre of phenyl methyl sulfide.  相似文献   

6.
Intermediates of chromium-salen catalyzed alkene epoxidations were studied in situ by EPR, (1)H and (2)H NMR, and UV-vis/NIR spectroscopy (where chromium-salens were (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamino chromium(III) chloride (1) and racemic N,N'-bis(3,4,5,6-tetra-deuterosalicylidene)-1,2-cyclohexanediamino chromium(III) chloride (2)). High-valence chromium complexes, intermediates of epoxidation reactions, were detected and characterized by EPR and NMR. They are the reactive mononuclear oxochromium(V) intermediate (A) Cr(V)O(salen)L (where L = Cl(-) or a solvent molecule) and an inactive chromium-salen binuclear complex (B) which acts as a reservoir of the active species. The latter complex demonstrates an EPR signal characteristic of oxochromium(V)-salen species and (1)H NMR spectra typical for chromium(III)-salen complexes, and it is identified as mixed-valence binuclear L(1)(salen)Cr(III)OCr(V)(salen)L(2) (L(1), L(2) = Cl(-) or solvent molecules). The intermediates Cr(V)O(salen)L and L(1)(salen)Cr(III)OCr(V)(salen)L(2) exist in equilibrium, and their ratio can be affected by addition of donor ligands (DMSO, DMF, H(2)O, pyridine). Addition of donor additives increases the fraction of A over that of B. The same two complexes can be obtained with m-CPBA as oxidant. Reactivities of the Cr(V)O(salen)L complexes toward E-beta-methylstyrene were measured in DMF. The L(1)(salen)Cr(III)OCr(V)(salen)L(2) intermediate has been proposed to be a reservoir of the true reactive chromium(V) species. The chromium-salen catalysts demonstrate low turnover numbers (ca. 5), probably due to ligand degradation processes.  相似文献   

7.
Low-coordinate first-row metal complexes of d(0) [vanadium(V)], d(1) [chromium(V)], and d(2) [chromium(IV)] assume the unusual ligand field of a pseudotetrahedron when supported by a tripodal tBu(2)(Me)CO(-) alkoxide framework. Structural, spectroscopic, and reactivity studies, supported by density functional theory calculations, indicate that the d electrons in the chromium(V) and -(IV) oxo complexes reside in metal-oxygen antibonding orbitals, engendering disparate reactivity of the metal-oxo, depending on the number of d electrons present.  相似文献   

8.
A facile method is described for the synthesis of cationic Re(VII) cis oxo imido complexes of the form [Re(O)(NAr)(salpd)+] (salpd = N,N'-propane-1,3-diylbis(salicylideneimine)), 4, [Re(O)(NAr)(saldach)+] (saldach = N,N'-cyclohexane-1,3-diylbis(salicylideneimine)), 5, and [Re(O)(NAr)(hoz)2+] (hoz = 2-(2'-hydroxyphenyl)-2-oxazoline) (Ar = 2,4,6,-(Me)C(6)H(2); 4-(OMe)C(6)H(4); 4-(Me)C(6)H(4); 4-(CF3)C6H4; 4-MeC(6)H(4)SO(2)), 6, from the reaction of oxorhenium(V) [(L)Re(O)(Solv)+] (1-3) and aryl azides under ambient conditions. Unlike previously reported cationic Re(VII) dioxo complexes, these cationic oxo imido complexes can be obtained on a preparative scale, and an X-ray crystal structure of [Re(O)(NMes)(saldach)+], 5a, has been obtained. Despite the multiple stereoisomers that could arise from tetradentate ligation of salen ligands to rhenium, one major isomer is observed and isolated in each instant. The electronic rationalization for stereoselectivity is discussed. Investigation of the mechanism suggests that the reactions of Re(V) with aryl azides proceed through an azido adduct similar to the group 5 complexes of Bergman and Cummins. Treatment of the cationic oxo imido complexes with a reductant (PAr(3), PhSMe, or PhSH) results in oxygen atom transfer (OAT) and the formation of cationic Re(V) imido complexes. [(salpd)Re(NMes)(PPh(3))(+)] (7) and [(hoz)2Re(NAr)(PPh(3))(+)] (Ar = m-OMe phenyl) (9) have been isolated on a preparative scale and fully characterized including an X-ray single-crystal structure of 7. The kinetics of OAT, monitored by stopped-flow spectroscopy, has revealed rate saturation for substrate dependences. The different plateau values for different oxygen acceptors (Y) provide direct support for a previously suggested mechanism in which the reductant forms a prior-equilibrium adduct with the rhenium oxo (ReVII = O<--Y). The second-order rate constants of OAT, which span more than 3 orders of magnitude for a given substrate, are significantly affected by the electronics of the imido ancillary ligand with electron-withdrawing imidos being most effective. However, the rate constant for the most active oxo imido rhenium(VII) is 2 orders of magnitude slower than that observed for the known cationic dioxo Re(VII) [(hoz)2Re(O)(2)(+)].  相似文献   

9.
A series of five free-base corroles were metalated and brominated to form 10 manganese(III) corroles. Two of the free-base corroles and six manganese(III) corroles were analyzed by X-ray crystallography, including one complex that may be considered a transition-state analogue of oxygen atom transfer (OAT) from (oxo)manganese(V) to thioansisole. Oxidation by ozone allowed for isolation of the 10 corresponding (oxo)manganese(V) corroles, whose characterization by (1)H and (19)F NMR spectroscopy and electrochemistry revealed a low-spin and triply bound manganese-oxygen moiety. Mechanistic insight was obtained by investigating their reactivity regarding stoichiometric OAT to a series of p-thioanisoles, revealing a magnitude difference on the order of 5 between the β-pyrrole brominated (oxo)manganese(V) corroles relative to the nonbrominated analogues. The main conclusion is that the (oxo)manganese(V) corroles are legitimate OAT agents under conditions where proposed oxidant-coordinated reaction intermediates are irrelevant. Large negative Hammett ρ constants are obtained for the more reactive (oxo)manganese(V) corroles, consistent with expectation for such electrophilic species. The least reactive complexes display very little selectivity to the electron-richness of the sulfides, as well as a non-first-order dependence on the concentration of (oxo)manganese(V) corrole. This suggests that disproportionation of the original (oxo)manganese(V) corrole to (oxo)manganese(IV) and (oxo)manganese(VI) corroles, followed by substrate oxidation by the latter complex, gains importance when the direct OAT process becomes progressively less favorable.  相似文献   

10.
The title complexes, the Re(O)L(2)(Solv)(+) complexes (L = hoz, 2-(2'-hydroxyphenyl)-2-oxazoline(-) or thoz, 2-(2'-hydroxyphenyl)-2-thiazoline(-); Solv = H(2)O or CH(3)CN), are effective catalysts for the following fundamental oxo transfer reaction between closed shell molecules: XO + Y --> X + YO. Among suitable oxygen acceptors (Y's) are organic thioethers and phosphines, and among suitable oxo donors (XO's) are pyridine N-oxide (PyO), t-BuOOH, and inorganic oxyanions. One of the remarkable features of these catalysts is their high kinetic competency in effecting perchlorate reduction by pure atom transfer. Oxo transfer to rhenium(V) proceeds cleanly to afford the cationic dioxorhenium(VII) complex Re(O)(2)L(2)(+) in a two-step mechanism, rapid substrate (XO) coordination to give the precursor adduct cis-Re(V)(O)(OX)L(2)(+) followed by oxygen atom transfer (OAT) as the rate determining step. Electronic variations with PyO derivatives demonstrated that electron-withdrawing substituents accelerate the rate of Re(VII)(O)(2)L(2)(+) formation from the precursor adduct cis-Re(V)(O)(OX)L(2)(+). The activation parameters for OAT with picoline N-oxide and chlorate have been measured; the entropic barrier to oxo transfer is essentially zero. The potential energy surface for the reaction of Re(O)(hoz)(2)(OH(2))(+) with PyO was defined, and all pertinent intermediates and transition states along the reaction pathway were located by density functional theory (DFT) calculations (B3LYP/6-31G). In the second half of the catalytic cycle, Re(O)(2)L(2)(+) reacts with oxygen acceptors (Y's) in second-order reactions with associative transition states. The rate of OAT to substrates spans a remarkable range of 0.1-10(6) L mol(-)(1) s(-)(1), and the substrate reactivity order is Ph(3)P > dialkyl sulfides > alkyl aryl sulfides > Ph(2)S approximately DMSO, which demonstrates electrophilic oxo transfer. Competing deactivation and inhibitory pathways as well as their relevant kinetics are also reported.  相似文献   

11.
High-valent metal oxo oxidants are common catalytic-cycle intermediates in enzymes and known to be highly reactive. To understand which features of these oxidants affect their reactivity, a series of biomimetic iron(V) oxo oxidants with peripherally substituted biuret-modified tetraamido macrocyclic ligands were synthesized and characterized. Major shifts in the UV/Vis absorption as a result of replacing a group in the equatorial plane of the iron(V) oxo species were found. Further characterization by EPR spectroscopy, ESI-MS, and resonance Raman spectroscopy revealed differences in structure and the electronic configuration of these complexes. A systematic reactivity study with a range of substrates was performed and showed that the reactions are affected by electron-withdrawing substituents in the equatorial ligand, which enhance the reaction rate by almost 1016 orders of magnitude. Thus, the long-range electrostatic perturbations have a major influence on the rate constant. Finally, computational studies identified the various electronic contributions to the rate-determining reaction step and explained how the equatorial ligand periphery affects the properties of the oxidant.  相似文献   

12.
The discovery of tungsten enzymes and molybdenum/tungsten isoenzymes, in which the mononuclear catalytic sites contain a metal chelated by one or two pterin-dithiolene cofactor ligands, has lent new significance to tungsten-dithiolene chemistry. Reaction of [W(CO)(2)(S(2)C(2)Me(2))(2)] with RO(-) affords a series of square pyramidal desoxo complexes [W(IV)(OR')(S(2)C(2)Me(2))(2)](1)(-), including R' = Ph (1) and Pr(i)() (3). Reaction of 1 and 3 with Me(3)NO gives the cis-octahedral complexes [W(VI)O(OR')(S(2)C(2)Me(2))(2)](1)(-), including R' = Ph (6) and Pr(i)() (8). These W(IV,VI) complexes are considered unconstrained versions of protein-bound sites of DMSOR and TMAOR (DMSOR = dimethylsulfoxide reductase, TMAOR = trimethylamine N-oxide reductase) members of the title enzyme family. The structure of 6 and the catalytic center of one DMSO reductase isoenzyme have similar overall stereochemistry and comparable bond lengths. The minimal oxo transfer reaction paradigm thought to apply to enzymes, W(IV) + XO --> W(VI)O + X, has been investigated. Direct oxo transfer was demonstrated by isotope transfer from Ph(2)Se(18)O. Complex 1 reacts cleanly and completely with various substrates XO to afford 6 and product X in second-order reactions with associative transition states. The substrate reactivity order with 1 is Me(3)NO > Ph(3)AsO > pyO (pyridine N-oxide) > R(2)SO > Ph(3)PO. For reaction of 3 with Me(3)NO, k(2) = 0.93 M(-)(1) s(-)(1), and for 1 with Me(2)SO, k(2) = 3.9 x 10(-)(5) M(-)(1) s(-)(1); other rate constants and activation parameters are reported. These results demonstrate that bis(dithiolene)W(IV) complexes are competent to reduce both N-oxides and S-oxides; DMSORs reduce both substrate types, but TMAORs are reported to reduce only N-oxides. Comparison of k(cat)/K(M) data for isoenzymes and k(2) values for isostructural analogue complexes reveals that catalytic and stoichiometric oxo transfer, respectively, from substrate to metal is faster with tungsten and from metal to substrate is faster with molybdenum. These results constitute a kinetic metal effect in direct oxo transfer reactions for analogue complexes and for isoenzymes provided the catalytic sites are isostructural. The nature of the transition state in oxo transfer reactions of analogues is tentatively considered. This research presents the first kinetics study of substrate reduction via oxo transfer mediated by bis(dithiolene)tungsten complexes.  相似文献   

13.
The mechanism of alkene epoxidation by chromium(v) oxo salen complexes has been studied by DFT and experimental methods. The reaction is compared to the closely related Mn-catalyzed process in an attempt to understand the dramatic difference in selectivity between the two systems. Overall, the studies show that the reactions have many similarities, but also a few critical differences. In agreement with experiment, the chromium system requires a change from low- to high-spin in the catalytic cycle, whereas the manganese system can proceed either with spin inversion or entirely on the high-spin surface. The low-spin addition of metal oxo species to an alkene leads to an intermediate which forms epoxide either with a barrier on the low-spin surface or without a barrier after spin inversion. Supporting evidence for this intermediate was obtained by using vinylcyclopropane traps. The chromium(v) oxo complexes can adopt a stepped shape or form a more concave surface, analogous to previous results on manganese salen complexes.  相似文献   

14.
The charge and spin distribution in manganese‐salen complexes were analyzed using different basis sets and density functionals. Five population analysis methods [Mulliken, Löwdin, Natural population analysis (NPA), atoms in molecules (AIM), and CHelpG] were used to characterize the charge distribution. Results show that NPA and AIM were the only methods capable of giving charges with the correct sign for all cases under study. According to the analysis of the natural charge and spin distributions, the salen ligand shows a complex behavior, counteracting the effect of the chloro and oxo ligands on the metal center. Furthermore, the presence of a chloride counter ion increases the oxo‐radical character of Oxo‐Mn(salen) complexes, which may play an important role in the rationalization of the catalytic properties of Mn(salen) complexes. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Liu Z  Anson FC 《Inorganic chemistry》2001,40(6):1329-1333
Fifteen Schiff base ligands were synthesized and used to form complexes with vanadium in oxidation states III, IV, and V. Electrochemical and spectral characteristics of the complexes were evaluated and compared. In acidified solutions in acetonitrile the vanadium(IV) complexes undergo reversible disproportionation to form V(III) and V(V) complexes. With several of the ligands the V(III) complexes are much more stable in the presence of acid than is the previously studied complex with salen, an unelaborated Schiff base ligand (H(2) salen = N,N'-ethylenebis(salicylideneamine)). Equilibrium constants for the disproportionation were evaluated. The vanadium(III) complexes reduce dioxygen to form two oxo ligands. The reaction is stoichiometric in the absence of acid, and second-order rate constants were evaluated. In the presence of acid some of the complexes investigated participate in a catalytic electroreduction of dioxygen.  相似文献   

16.
Catalytic properties of a series of iron(III)-salen (salen=N,N'-bis(salicylidene)ethylenediamine dianion) and related complexes in asymmetric sulfoxidation reactions, with iodosylarenes as terminal oxidants, have been explored. These catalysts have been found to efficiently catalyze oxidation of alkyl aryl sulfides to sulfoxides with high chemoselectivity (up to 100 %) and moderate-to-high enantioselectivity (up to 84 % with isopropylthiobenzene and iodosylmesitylene), the TON (TON=turnover number) approaching 500. The influence of the ligand (electronic and steric effects of the substituents), oxidant, and substrate structures on the oxidation stereoselectivity has been investigated systematically. The structure of the reactive intermediates (complexes of the type [Fe(III)(ArIO)(salen)] and the reaction mechanism have been revealed by both mechanistic studies with different iodosylarenes and direct in situ (1)H NMR observation of the formation of the reactive species and its reaction with the substrate.  相似文献   

17.
Catalytic properties of a series of chiral (pyrrolidine salen)Mn(III) complexes for asymmetric oxidation of aryl methyl sulfides were evaluated. Moderate activity, good chemical selectivity and low enantioselectivity were attained with iodosylbenzene as a terminal oxidant. Enantioselectivity of sulfide oxidation was affected slightly by polar solvent and the sulfoxidation carried out in THF for thioanisole and in CH3CO2Et for electron‐deficient sulfides gave better enatioselctivities. The addition of the donor ligand PPNO (4‐phenylpyridine N‐oxide) or MNO (trimethylamine N‐oxide) only has a minor positive effect on the enantioselectivity. Also explored was the steric effect of the Naza‐substituent in the backbone of (pyrrolidine salen)Mn(III) complexes on the enantioselectivity of sulfide oxidation. The sulfides' access pathway is discussed based on the catalytic results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
High‐spin iron(III)‐iodosylarene complexes are highly reactive in the epoxidation of olefins, in which epoxides are formed as the major products with high stereospecificity and enantioselectivity. The reactivity of the iron(III)‐iodosylarene intermediates is much greater than that of the corresponding iron(IV)‐oxo complex in these reactions. The iron(III)‐iodosylarene species—not high‐valent iron(IV)‐oxo and iron(V)‐oxo species—are also shown to be the active oxidants in catalytic olefin epoxidation reactions. The present results are discussed in light of the long‐standing controversy on the one oxidant versus multiple oxidants hypothesis in oxidation reactions.  相似文献   

19.
Chiral (pyrrolidine salen)Mn(III) complexes 1 with an N-benzoyl group and 2 with an N-isonicotinoyl group as well as the corresponding N-methyl (3) and N-benzyl (4) pyridinium salts of 2 were synthesized. The catalytic properties of 1–4 and 2 with excess CH3I were explored to figure out the influence of the internal pyridinium salt in the catalyst on asymmetric epoxidation of substituted chromenes with NaClO/PPNO as an oxidant system in the aqueous/organic biphasic medium. The (pyrrolidine salen)Mn(III) complexes with an internal pyridinium salt, either formed in situ or isolated, displayed higher activities than analogous complexes 1, 2 and Jacobsen's catalyst in the aforementioned reaction, with comparable high yields and ee values. The acceleration of the reaction rate is attributed to the phase transfer capability of the built-in pyridinium salt of the (salen)Mn(III) catalyst. The effect of the internal pyridinium salt on the epoxidation of substituted chromenes is similar to that of the external pyridinium salts and ammonium halides.  相似文献   

20.
The mechanism for the transformation among a series of Cr(II) to Cr(V) complexes bearing tetra-N-heterocyclic carbene macrocycle is investigated. The oxidation and aziridination of Cr(II) monomer are studied by local density functional M06L. The former generates Cr(IV) oxo and further oxidizes to cationic Cr(V) oxo. The latter proceeds via two paths with different multiplicity, forming Cr(IV) imide. The Cr(IV) oxo cannot transfer its oxygen atom neither to phosphine nor to alkene because of the high energy barrier and endothermic process. The group transfer reactions are explored for Cr(V) oxo and Cr(IV) imide. The doublet Cr(V) oxo can also exist as quartet Cr(IV)-oxyl radical and promote oxygen transfer to phosphine, resulting in phosphine oxide in one exergonic step. The macrocyclic ligand effect of imido group transfer from Cr(IV) imide is verified by Multiwfn analysis. For 18-ringed imide, the matched orbital type and same-phase overlap reduce the barrier of its 16-ringed analog and facilitate the formation of phosphorus imine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号