首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrolysis of Bi(NO(3))(3) in aqueous solution gave crystals of the novel compounds [Bi(6)O(4)(OH)(4)(NO(3))(5)(H(2)O)](NO(3)) (1) and [Bi(6)O(4)(OH)(4)(NO(3))(6)(H(2)O)(2)]·H(2)O (2) among the series of hexanuclear bismuth oxido nitrates. Compounds 1 and 2 both crystallize in the monoclinic space group P2(1)/n but show significant differences in their lattice parameters: 1, a = 9.2516(6) ?, b = 13.4298(9) ?, c = 17.8471(14) ?, β = 94.531(6)°, V = 2210.5(3) ?(3); 2, a = 9.0149(3) ?, b = 16.9298(4) ?, c = 15.6864(4) ?, β = 90.129(3)°, V = 2394.06(12) ?(3). Variation of the conditions for partial hydrolysis of Bi(NO(3))(3) gave bismuth oxido nitrates of even higher nuclearity, [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·4DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·4DMSO] (3) and [{Bi(38)O(45)(NO(3))(24)(DMSO)(26)}·2DMSO][{Bi(38)O(45)(NO(3))(24)(DMSO)(24)}·0.5DMSO] (5), upon crystallization from DMSO. Bismuth oxido clusters 3 and 5 crystallize in the triclinic space group P1? both with two crystallographically independent molecules in the asymmetric unit. The following lattice parameters are observed: 3, a = 20.3804(10) ?, b = 20.3871(9) ?, c = 34.9715(15) ?, α = 76.657(4)°, β = 73.479(4)°, γ = 60.228(5)°, V = 12021.7(9) ?(3); 5, a = 20.0329(4) ?, b = 20.0601(4) ?, c = 34.3532(6) ?, α = 90.196(1)°, β = 91.344(2)°, γ = 119.370(2)°, V = 12025.8(4) ?(3). Differences in the number of DMSO molecules (coordinated and noncoordinated) and ligand (nitrate, DMSO) coordination modes are observed.  相似文献   

2.
A series of novel organically templated metal sulfates, [C(5)H(14)N(2)][M(II)(H(2)O)(6)](SO(4))(2) with (M(II) = Mn (1), Fe (2), Co (3) and Ni (4)), have been successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy, thermogravimetric analysis and magnetic measurements. All compounds were prepared using a racemic source of the 2-methylpiperazine and they crystallized in the monoclinic systems, P2(1)/n for (1, 3) and P2(1)/c for (2,4). Crystal data are as follows: [C(5)H(14)N(2)][Mn(H(2)O)(6)](SO(4))(2), a = 6.6385(10) ?, b = 11.0448(2) ?, c = 12.6418(2) ?, β = 101.903(10)°, V = 906.98(3) ?(3), Z = 2; [C(5)H(14)N(2)][Fe(H(2)O)(6)](SO(4))(2), a = 10.9273(2) ?, b = 7.8620(10) ?, c = 11.7845(3) ?, β = 116.733(10)°, V = 904.20(3) ?(3), Z = 2; [C(5)H(14)N(2)][Co(H(2)O)(6)](SO(4))(2), a = 6.5710(2) ?, b = 10.9078(3) ?, c = 12.5518(3) ?, β = 101.547(2)°, V = 881.44(4) ?(3), Z = 2; [C(5)H(14)N(2)][Ni(H(2)O)(6)](SO(4))(2), a = 10.8328(2) ?, b = 7.8443(10) ?, c = 11.6790(2) ?, β = 116.826(10)°, V = 885.63(2) ?(3), Z = 2. The three-dimensional structure networks for these compounds consist of isolated [M(II)(H(2)O)(6)](2+) and [C(5)H(14)N(2)](2+) cations and (SO(4))(2-) anions linked by hydrogen-bonds only. The use of racemic 2-methylpiperazine results in crystallographic disorder of the amines and creation of inversion centers. The magnetic measurements indicate that the Mn complex (1) is paramagnetic, while compounds 2, 3 and 4, (M(II) = Fe, Co, Ni respectively) exhibit single ion anisotropy.  相似文献   

3.
The three-dimensional structure of a complex tubular uranyl phosphonate, (UO(2))(3)(HO(3)PC(6)H(5))(2)(O(3)PC(6)H(5))(2).H(2)O, was determined ab initio from laboratory X-ray powder diffraction data and refined by the Rietveld method. The crystals belong to the space group P2(1)2(1)2(1), with a = 17.1966(2) ?, b = 7.2125(2) ?, c = 27.8282(4) ?, and Z = 4. The structure consists of three independent uranium atoms, among which two are seven-coordinated and the third is eight-coordinated. These metal atoms are connected by four different phosphonate groups to form a one-dimensional channel structure along the b axis. The phenyl groups are arranged on the outer periphery of the channels, and their stacking forces keep the channels intact in the lattice. The determination of this structure which contains 50 non-hydrogen atoms in the asymmetric unit, from conventional X-ray powder data, represents significant progress in the application of powder techniques to structure solution of complex inorganic compounds, including organometallic compounds.  相似文献   

4.
In this contribution, we describe the preparation and single-crystal X-ray diffraction of a new building block for bimetallic solid state materials. X-ray diffraction data of these complexes indicate that (PPh(4))(2)[Fe(CN)(5)imidazole]·2H(2)O crystallizes in the triclinic space group P1 with a = 9.8108(15) ?, b = 11.1655(17) ?, c = 23.848(4) ?, α = 87.219(2)°, β = 85.573(2)°, γ = 70.729(2)°, and Z = 2, while its precursor Na(3)[Fe(CN)(5)(en)]·5H(2)O crystallizes in the monoclinic space group P2(1)/n with a = 8.3607(7) ?, b = 11.1624(9) ?, c = 17.4233(14) ?, β = 90.1293(9)°, and Z = 4. Spectroscopic and magnetic properties of a series of bimetallic materials were obtained by reaction of the complex [Fe(CN)(5)imidazole](2-) with hydrated transition metal ions [M(H(2)O)(n)](2+) (M = Mn, Co, Zn; n = 4 or 6). The new bimetallic materials obtained are [Co(H(2)O)(2)][Fe(CN)(5)imidazole]·2H(2)O (1), [Mn(CH(3)OH)(2)][Fe(CN)(5)imidazole] (2), Zn[Fe(CN)(5)imidazole]·H(2)O (3), and [Mn(bpy)][Fe(CN)(5)imidazole].H(2)O (4). All of the complexes crystallize in the orthorhombic system. X-ray single-crystal analysis of the compounds identified the Imma space group with a = 7.3558(10) ?, b = 14.627(2) ?, c = 14.909(2) ?, and Z = 4 for 1; the P2(1)2(1)2(1) space group with a = 7.385(5) ?, b = 13.767(9) ?, c = 14.895(10) ?, and Z = 4 for 2; the Pnma space group with a = 13.783(2) ?, b = 7.167(11) ?, c = 12.599(2) ?, and Z = 4 for 3; and the Pnma space group with a = 13.192(3) ?, b = 7.224(16) ?, c = 22.294(5) ?, and Z = 4 for 4. The structures of 1, 2, and 4 consist of two-dimensional network layers containing, as the repeating unit, a cyclic tetramer [M(2)Fe(2)(CN)(4)] (M = Mn, Co). H bonding between the layers in the structure of 1 results in a quasi-three-dimensional network. The structure of 3 was found to be three-dimensional, where all of the cyano ligands are involved in bridging between the metal centers. The bridging character of the cyano is confirmed spectroscopically. The magnetic properties have been investigated for all of the bimetallic systems. Compound 1 shows ferromagnetic behavior with an ordering temperature at 25 K, which is higher than the corresponding Prussian Blue analogue Co(x)[Fe(CN)(6)](y)?·zH(2)O. Compound 2 shows weak ferromagnetic behavior and an interlayer antiferromagnetic character, while 3, as expected, shows paramagnetic character due to the diamagnetic character of Zn(2+). Compound 4 shows antiferromagnetic behavior.  相似文献   

5.
Reactions of the antimicrobial fluoroquinolone ciprofloxacin (cfH) with metal salts in the presence of aromatic polycarboxylate ligands or under basic conditions produce fourteen new metal-cfH complexes, namely, [Ba2(cf)2(1,4-bdc)(H2O)2] x H2O (1), [Sr6(cf)6(1,4-bdc)3(H2O)6] x 2H2O (2), [M2(cfH)2(bptc)(H2O)2] x 8H2O (M = Mn3 and Cd4), [M(cfH)(1,3-bdc)] (M = Mn5, Co6, and Zn7), [Zn2(cfH)4(1,4-bdc)](1,4-bdc) x 13H2O (8), [Ca(cfH)2(1,2-Hbdc)2] x 2H2O (9) and [M(cf)2] x 2.5H2O (M = Mn10, Co11, Zn12, Cd13, and Mg14) (1,4-bdc = 1,4-benzenedicarboxylate, bptc = 3,3',4,4'-benzophenonetetracarboxylate, 1,3-bdc = 1,3-benzenedicarboxylate, 1,2-bdc = 1,2-benzenedicarboxylate). Their structures were determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, and thermogravimetric analyses. The structures of 1 and 2 consist of unique two-dimensional arm-shaped layers. Compounds 3 and 4 are isostructural and feature one-dimensional structures formed from the interconnection of [M2(cfH)2(H2O)2] dimers with bptc ligands. Compounds 5-7 are isostructural and contain double-chain-like ribbons constructed from [M2(cfH)2(CO2)2] dimers and 1,3-bdc. Compound 8 consists of a pair of [Zn(cfH)2]2+ fragments bridged by a 1,4-bdc into a dinuclear dumbbell structure. Compound 9 is a neutral monomeric complex. To the best of our knowledge, compounds 1-9 are the first examples of metal-quinolone complexes that contain aromatic polycarboxylate ligands. Compounds 10-14 are isostructural and exhibit interesting two-dimensional rhombic grids featuring large cavities with dimensions of 13.6x13.6 A. Up to now, polymeric extended metal-cfH complexes have never been reported.  相似文献   

6.
The reaction of N-(phosphonomethyl)piperidine and N,N'-bis(phosphonomethyl)bipiperidine with zirconium(IV) in hydrofluoric acid media led to the preparation of two new zirconium fluoride phosphonate derivatives with 1D and 2D structure, respectively. Their structures were solved ab initio from laboratory powder X-ray diffraction (PXRD) data. The monophosphonate derivative, with formula ZrF(2)(HF)(O(3)PCH(2)NC(5)H(10)), has a 1D structure (triclinic, space group P ?1, a = 6.6484(3) ?, b = 7.1396(3) ?, c = 12.2320(6) ?, α = 77.932(4)°, β = 87.031(6)°, γ = 78.953(5)°, V = 557.22(4) ?(3), and Z = 2) made of inorganic chains constituted from the connection of zirconium octahedra and phosphorus tetrahedra with the piperidine groups bonded on their external part. The diphosphonate derivative, with formula Zr(2)F(4)(HF)(2)(O(3)PCH(2))NC(10)H(18)N(CH(2)PO(3)), has a 2D structure (triclinic, space group P ?1, a = 6.6243(3) ?, b = 7.2472(4) ?, c = 12.2550(7) ?, α = 102.879(4)°, β = 100.29(1)°, γ = 101.287(7)°, V = 547.03(4) ?(3), and Z = 1) composed of the packing of covalent layers whose structure may be ideally obtained by the joining of adjacent chains of the 1D compound. In these hybrid layers, inorganic regions made of the connectivity of zirconium octahedra and phosphorus tetrahedra alternate with organic regions represented by the bipiperidine moieties. A section dedicated to vibrational spectroscopy analysis is also included, mainly devoted to clarify some issues not easily deducible on the basis of PXRD data and to describe the fluorine environment inside zirconium phosphonate structures.  相似文献   

7.
Three new centrosymmetric trinuclear nickel(II) and manganese(II) complexes, Ni[Ni(CH(3)COO)(CPA)](2) (1), Ni[Ni(CH(3)COO)(BPA)](2) (2), Mn[Mn(CH(3)COO)(BPA)](2) (3), where H(2)CPA = N,N'-bis(5-chlorosalicylidene)-1,3-propanediamine, H(2)BPA = N,N'-bis(5-bromosalicylidene)-1,3-propanediamine, and two new centrosymmetric dinuclear zinc(II) complexes, [Zn(2)(CMP)(2)] (4) and [Zn(2)(BMP)(2)] (5), where H(2)CMP = 4-chloro-2-{[3-(5-chloro-2-hydroxybenzyl)aminopropylimino]methyl}phenol, and H(2)BMP = 4-bromo-2-{[3-(5-bromo-2-hydroxybenzyl)aminopropylimino]methyl}phenol, have been prepared from the Schiff bases derived from 5-halido-substituted salicylaldehydes with N-hexylpropane-1,3-diamine under solvothermal conditions. The complexes have been characterised by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction studies. The complexes 1, 2, and 3 crystallise in the monoclinic space group P2(1)/c with cell dimensions a = 9.347(1), b = 11.507(2), c = 18.539(2) ?, β = 93.774(2)°, Z = 2 (for 1), a = 9.111(4), b = 12.089(6), c = 18.724(8) ?, β = 92.117(7)°, Z = 2 (for 2), and a = 11.328(2), b = 22.468(5), c = 8.270(2) ?, β = 93.74(3)°, Z = 2 (for 3), while complexes 4 and 5 crystallise in the triclinic space group P1, with cell dimensions a = 7.483(1), b = 9.990(2), c = 12.155(2) ?, α = 75.27(3), β = 85.00(3), γ = 73.82(3)°, Z = 1 (for 4), and a = 7.008(1), b = 10.081(2), c = 13.095(3) ?, α = 100.62(3), β = 95.51(3), γ = 104.03(3)°, Z = 1 (for 5). It is interesting that the mono-Schiff bases 4-chloro-2-[(3-cyclohexylaminopropylimino)methyl]phenol (HCCP) and 4-bromo-2-[(3-cyclohexylaminopropylimino)methyl]phenol (HBCP) used to prepare the nickel(II) and manganese(II) complexes were transferred to bis-Schiff bases H(2)CPA and H(2)BPA in the complexes 1, 2, and 3, while the mono-Schiff bases HCCP and HBCP used to prepare the zinc(II) complexes were transferred to novel ligands H(2)CMP and H(2)BMP, bearing the unexpected, newly formed carbon-nitrogen single bond.  相似文献   

8.
Su T  Xing H  Xu J  Yu J  Xu R 《Inorganic chemistry》2011,50(3):1073-1078
Three new open-framework metal borophosphates, [Na(6)Co(3)B(2)P(5)O(21)Cl]·H(2)O (JIS-4), K(5)Mn(2)B(2)P(5)O(19)(OH)(2) (JIS-5), (NH(4))(8)[Co(2)B(4)P(8)O(30)(OH)(4)] (JIS-6), have been prepared under ionothermal conditions using ionic liquid 1-ethyl-3-methylimidazolium ([Emim]Br) as the solvent. They are the first examples of metalloborophosphate prepared by the ionothermal method. Their structures are determined by single-crystal X-ray diffraction. The 3-D open framework of JIS-4 is made of CoO(5)Cl octahedra, CoO(5) square pyramids, and PO(4) and BO(4) tetrahedra forming 12-ring channels along the [010] direction. It is noted that JIS-4 is the first 3-D open-framework structure in the family of borophosphate with the B/P ratio of 2/5, which features a borophosphate cluster anionic partial structure. Such cluster anionic partial structures connect with MnO(6) octahedra and MnO(5) trigonal bipyramids resulting in the formation of the 2-D layer structure of JIS-5 with the same B/P ratio as JIS-4. The 2-D layer structure of JIS-6 belongs to the largest family of borophosphate with a B/P ratio of 1/2 which features a unique 1-D chain anionic partial structure. Crystal data for JIS-4, orthorhombic, Pnma, a = 14.0638(8) ?, b = 9.8813(7) ?, c = 14.0008(10) ?, V = 1945.7(2) ?(3), and Z = 2; for JIS-5, monoclinic, P2(1)/n, a = 14.4939(3) ?, b = 9.2539(3) ?, c = 14.8031(4) ?, β = 101.4600(10)°, V = 1945.88(9) ?(3), and Z = 4. For JIS-6, triclinic, P1, a = 9.6928(3) ?, b = 9.8747(3) ?, c = 10.0125(2) ?, α = 62.057(2)°, β = 82.456(2)°, γ = 76.095(2)°, V = 821.60(4) ?(3), and Z = 1.  相似文献   

9.
New two-dimensional (2D) bismuth and three-dimensional (3D) lead based coordination polymers containing pyridine-2,5-dicarboxylate ligands (H(2)pydc) have been synthesized hydrothermally and characterized by single crystal X-ray diffraction. Bi(3)(μ(3)-O)(2)(pydc)(2)(Hpydc)(H(2)O)(2) (1), which crystallizes in the space group P1? (a = 8.7256(5) ?, b = 11.1217(7) ?, c = 14.0933(9) ?, α = 85.239(1)°, β = 98.582(1)°, γ = 71.106(1)°), has a 3D structure that contains Bi(6)O(4) clusters that connect into 2D sheets via linking ligands. The sheets form a 3D supramolecular structure via hydrogen bonding along the z-axis. Pb(pydc)(H(2)O) (2), which crystallizes in the space group P2(1)/c (a = 10.8343(14) ?, b = 11.2099(15) ?, c = 6.6573(9) ?, β = 90.697(2)°), contains 1D chains of corner-sharing distorted face capped trigonal prisms that are connected into a 3D framework via the pydc ligand. In addition, the ligands are hydrogen bonded to each other. Both 1 and 2 are single component "white" light emitting phosphors and are shown to exhibit "white" luminescence that covers a much wider spectral range than is observed for the as received H(2)pydc ligand.  相似文献   

10.
Liu HK  Chang WJ  Lii KH 《Inorganic chemistry》2011,50(22):11773-11776
A new uranium(VI) silicate, Cs(2)UO(2)Si(10)O(22), has been synthesized by a high-temperature, high-pressure hydrothermal method and characterized by single-crystal X-ray diffraction, luminescence, and solid state NMR spectroscopy. It crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 12.2506(4) ?, b = 8.0518(3) ?, c = 23.3796(8) ?, β = 90.011(2)°, and Z = 4. Its structure consists of silicate double layers in the ab plane which are connected by UO(6) tetragonal bipyramids via four equatorial oxygen atoms to form a 3D framework with nine-ring channels parallel to the b axis where the Cs(+) cations are located. The photoluminescence emission spectrum at room temperature consists of one broad structured band which is typical of uranyl. The (29)Si MAS NMR spectrum is consistent with the crystal structure as determined from X-ray diffraction, and the resonances in the spectrum are assigned. A comparison of related uranyl silicate structures is made.  相似文献   

11.
A tetra-n-butylammonium (TBA) salt of [H(4.5)(Ta(6)O(19))](3.5-) was synthesized by reacting hydrous tantalum oxide with TBAOH. X-ray structural analysis of TBA(3.5)[H(4.5)(Ta(6)O(19))]·2THF·5.5H(2)O (THF = tetrahydrofuran) revealed that this compound consists of a hydrogen-bonded, rod-shaped tetramer of hexatantalate that is almost 30 ? long together with TBA cations and solvent molecules of crystallization [a = 20.6354(5) ?, b = 25.5951(7) ?, c = 37.2058(8) ?, α = 77.092(1)°, β = 86.177(1)°, γ = 88.683(1)°, V = 19110.9(8) ?(3), Z = 8, and space group P ?1]. (1)H NMR spectra showed that this tetrameric structure is maintained in solution.  相似文献   

12.
Two new vanadotellurates, [HTeV(9)O(28)](4-) and [H(2)TeV(9)O(28)](3-) have been synthesized and structurally characterized as tetra-n-butylammonium (TBA) salts: TBA(4)[HTeV(9)O(28)]·2CH(3)CN [triclinic, space group P ?1, a = 16.7102(6) ?, b = 17.4680(7) ?, c = 17.9634(7) ?, α = 74.412(1)°, β = 67.494(1)°, γ = 74.160(2)°, Z = 2] and TBA(3)[H(2)TeV(9)O(28)] [monoclinic, space group P2(1)/c, a = 13.0013(5) ?, b = 19.157(1) ?, c = 28.453(1) ?, β = 97.222(2)°, Z = 4]. The results of the structural analyses indicate that the four O atoms that bridge two V atoms on the Te side are the most basic ones in the structure. The results of density-functional theory (DFT) calculations support this view.  相似文献   

13.
A series of uranyl and lanthanide (trivalent Ce, Nd) mellitates (mel) has been hydrothermally synthesized in aqueous solvent. Mixtures of these 4f and 5f elements also revealed the formation of a rare case of lanthanide-uranyl coordination polymers. Their structures, determined by XRD single-crystal analysis, exhibit three distinct architectures. The pure lanthanide mellitate Ln(2)(H(2)O)(6)(mel) possesses a 3D framework built up from the connection of isolated LnO(6)(H(2)O)(3) polyhedra (tricapped trigonal prism) through the mellitate ligand. The structure of the uranyl mellitate (UO(2))(3)(H(2)O)(6)(mel)·11.5H(2)O is lamellar and consists of 8-fold coordinated uranium atoms linked to each other through the organic ligand giving rise to the formation of a 2D 3(6) net. The third structural type, (UO(2))(2)Ln(OH)(H(2)O)(3)(mel)·2.5H(2)O, involves direct oxygen bondings between the lanthanide and uranyl centers, with the isolation of a heterometallic dinuclear motif. The 9-fold coordinated Ln cation, LnO(5)(OH)(H(2)O)(3), is linked to the 7-fold coordinated uranyl (UO(2))O(4)(OH) (pentagonal bipyramid) via one μ(2)-hydroxo group and one μ(2)-oxo group. The latter is shared between the uranyl bonding (U═O = 1.777(4)/1.779(6) ?) and a long Ln-O bonding (Ce-O = 2.822(4) ?; Nd-O = 2.792(6) ?). This unusual linkage is a unique illustration of the so-called cation-cation interaction associating 4f and 5f metals. The dinuclear motif is then further connected through the mellitate ligand, and this generates organic-inorganic layers that are linked to each other via discrete uranyl (UO(2))O(4) units (square bipyramid), which ensure the three-dimensional cohesion of the structure. The mixed U-Ln carboxylate is thermally decomposed from 260 to 280 °C and then transformed into the basic uranium oxide (U(3)O(8)) together with U-Ln oxide with the fluorite structural type ("(Ln,U)O(2)"). At 1400 °C, only fluorite type "(Ln,U)O(2)" is formed with the measured stoichiometry of U(0.63)Ce(0.37)O(2) and U(0.60)Nd(0.40)O(2-δ).  相似文献   

14.
With the high-throughput (HT) methodology, the bifunctional aminoalkylphosphonic acids (AAPA) linker molecules 2-aminoethyl- (AEPA), 3-aminopropyl- (APPA), and 4-aminobutylphosphonic acid (ABPA) [HO(3)P-C(n)H(2n)-NH(2) (n = 2-4)] and zinc nitrate were used to synthesize new metal phosphonates in order to investigate the influence of the alkyl chain length on the structure formation. The systematic investigations led to one known (ZnO(3)PC(2)H(4)NH(2)) and six new compounds: one using AEPA, three using APPA, and two using ABPA. The crystal structures of five compounds were determined by single crystal X-ray diffraction, using X-ray powder diffraction (XRPD) data as well as structure modeling employing force field methods. For compound 1, Zn(O(3)P-C(2)H(4)-NH(3))(NO(3))(H(2)O) (monoclinic, Cc, a = 4.799(1) ?, b = 29.342(6) ?, c = 5.631(1) ?, β = 91.59(3)°, V = 792.7(3) ?(3), Z = 4), and compound 2, Zn(2)(OH)(O(3)P-C(3)H(6)-NH(3))(NO(3)) (monoclinic, P2/c, a = 12.158(2) ?, b = 5.0315(10) ?, c = 13.952(3) ?, β = 113.23(3)°, V = 784.3(3) ?(3), Z = 2), the structures were determined using single crystal X-ray diffraction data. The crystal structures of [Zn(O(3)P-C(3)H(6)-NH(2))]·H(2)O (3) (monoclinic, P2(1)/c, a = 9.094(2) ?, b = 5.0118(7) ?, c = 16.067(4) ?, β = 90.38(2)°, V = 732.3(2) ?(3), Z = 4) and Zn(O(3)P-C(4)H(8)-NH(2)) (5) (monoclinic, P2(1)/c, a = 8.570(7) ?, b = 8.378(4) ?, c = 9.902(6) ?, β = 90.94(5)°, V = 710.9(8) ?(3), Z = 4) were determined using XRPD data. The structural model for compound 6, Zn(O(3)P-C(4)H(8)-NH(3))(NO(3))(H(2)O), was established using lattice parameters from XRPD data and following crystal structure modeling employing force field methods. The structures depend strongly on the alkyl chain length n. For n = 2 and 4 isoreticular compounds are observed, while n = 3 leads to new structures. Larger amounts of all compounds were obtained employing scale-up syntheses in a conventional oven as well as in a microwave reactor system. In addition, in situ energy dispersive X-ray diffraction (EDXRD) experiments at 130 °C were performed at beamline F3 at HASYLAB, DESY, Hamburg, to investigate the formation of compounds 2 and 3 as well as the phase transformation of 2 into 3 upon addition of NaOH. All compounds were characterized in detail using X-ray powder diffraction, IR/Raman spectroscopy, and thermogravimetric and elemental analysis.  相似文献   

15.
Yu K  Zhou BB  Yu Y  Su ZH  Yang GY 《Inorganic chemistry》2011,50(5):1862-1867
A new layered molybdenum cobalt phosphate, Na(2)[Co(H(2)O)(6)][(Mo(16)O(32))Co(16)(PO(4))(4) (HPO(4))(16)(H(2)PO(4))(4)(OH)(4)(C(10)H(8)N(2))(4)(C(5)H(4)N)(2)(H(2)O)(6)]·4H(2)O (1), has been hydrothermally synthesized and structurally characterized. 1 crystallizes in the monoclinic space group P2(1)/n with a = 15.6825(18) ?, b = 39.503(4) ?, c = 17.2763(17) ?, β = 93.791(2)°, V = 10679.4(18) ?(3), and Z = 2. A polyoxoanion of 1 exhibits an unusual organic-inorganic hybrid wheel-type cluster, in which two pyridine ligands link to the surface Co(II) atoms of a [H(24)(Mo(16)O(32))Co(16)(PO(4))(24)(OH)(4)(H(2)O)(6)] (namely, {Mo(16)Co(16)P(24)}) wheel via the Co-N bonds. Furthermore, each {Mo(16)Co(16)P(24)} wheel is connected to four adjacent wheels by four pairs of 4,4'-bipyridine linkers, forming a 2D layered network. The susceptibility measurement shows the existence of dominant antiferromagnetic interactions in 1.  相似文献   

16.
Microcrystalline single-phase strontium oxotellurate(IV) monohydrate, SrTeO(3)(H(2)O), was obtained by microwave-assisted hydrothermal synthesis under alkaline conditions at 180 °C for 30 min. A temperature of 220 °C and longer reaction times led to single crystal growth of this material. The crystal structure of SrTeO(3)(H(2)O) was determined from single crystal X-ray diffraction data: P2(1)/c, Z = 4, a = 7.7669(5), b = 7.1739(4), c = 8.3311(5) ?, β = 107.210(1)°, V = 443.42(5) ?(3), 1403 structure factors, 63 parameters, R[F(2)>2σ(F(2))] = 0.0208, wR(F(2) all) = 0.0516, S = 1.031. SrTeO(3)(H(2)O) is isotypic with the homologous BaTeO(3)(H(2)O) and is characterised by a layered assembly parallel to (100) of edge-sharing [SrO(6)(H(2)O)] polyhedra capped on each side of the layer by trigonal-prismatic [TeO(3)] units. The cohesion of the structure is accomplished by moderate O-H···O hydrogen bonding interactions between donor water molecules and acceptor O atoms of adjacent layers. In a topochemical reaction, SrTeO(3)(H(2)O) condensates above 150 °C to the metastable phase ε-SrTeO(3) and transforms upon further heating to δ-SrTeO(3). The crystal structure of ε-SrTeO(3), the fifth known polymorph of this composition, was determined from combined electron microscopy and laboratory X-ray powder diffraction studies: P2(1)/c, Z = 4, a = 6.7759(1), b = 7.2188(1), c = 8.6773(2) ?, β = 126.4980(7)°, V = 341.20(18) ?(3), R(Fobs) = 0.0166, R(Bobs) = 0.0318, Rwp = 0.0733, Goof = 1.38. The structure of ε-SrTeO(3) shows the same basic set-up as SrTeO(3)(H(2)O), but the layered arrangement of the hydrous phase transforms into a framework structure after elimination of water. The structural studies of SrTeO(3)(H(2)O) and ε-SrTeO(3) are complemented by thermal analysis and vibrational spectroscopic measurements.  相似文献   

17.
Two new polyoxovanadates (Co(N(3)C(5)H(15))(2))(2)[{Co(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·5H(2)O (1) and (Ni(N(3)C(5)H(15))(2))(2)[{Ni(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·8H(2)O (2) (N(3)C(5)H(15) = N-(2-aminoethyl)-1,3-propanediamine) were synthesized under solvothermal conditions and structurally characterized. In both structures the [V(15)Sb(6)O(42)(H(2)O)](6-) shell displays the main structural motif, which is strongly related to the {V(18)O(42)} archetype cluster. Both compounds crystallize in the triclinic space group P1 with a = 14.3438(4), b = 16.6471(6), c = 18.9186(6) ?, α = 87.291(3)°, β = 83.340(3)°, γ = 78.890(3)°, and V = 4401.4(2) ?(3) (1) and a = 14.5697(13), b = 15.8523(16), c = 20.2411(18) ?, α = 86.702(11)°, β = 84.957(11)°, γ = 76.941(11)°, and V = 4533.0(7) ?(3) (2). In the structure of 1 the [V(15)Sb(6)O(42)(H(2)O)](6-) cluster anion is bound to a [Co(N(3)C(5)H(15))(2)](2+) complex via a terminal oxygen atom. In the Co(2+)-centered complex, one of the amine ligands coordinates in tridentate mode and the second one in bidentate mode to form a strongly distorted CoN(5)O octahedron. Similarly, in compound 2 an analogous NiN(5)O complex is joined to the [V(15)Sb(6)O(42)(H(2)O)](6-) anion via the same attachment mode. A remarkable difference between the two compounds is the orientation of the noncoordinated propylamine group leading to intermolecular Sb···O contacts in 1 and to Sb···N interactions in 2. In the solid-state lattices of 1 and 2, two additional [M(N(3)C(5)H(15))(2)](2+) complexes act as countercations and are located between the [{M(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)](4-) anions. Between the anions and cations strong N-H···O hydrogen bonds are observed. In both compounds the clusters are stacked along the b axis in an ABAB fashion with cations and water molecules occupying the space between the clusters. Magnetic characterization demonstrates that the Ni(2+) and Co(2+) cations do not significantly couple with the S = 1/2 vanadyl groups. The susceptibility data can be successfully reproduced assuming a distorted ligand field for the Co(2+) ions (1) and an O(h)-symmetric Ni(2+) ligand field (2).  相似文献   

18.
A novel metal-organic network [Cu(4)(5-NH(2)-1,3-bdc)(4)(pyridine)(2)(H(2)O)(2)](n), displaying an unprecedented topology has been constructed utilizing the different coordinating functional groups of 5-NH(2)-1,3-bdc to generate a ternary network based upon vertex-linked triangular, square and tetrahedral molecular building blocks (MBBs).  相似文献   

19.
Dinuclear nickel(II) complexes of the ligands 2,6-bis[bis((2-benzimidazolylmethyl)amino)methyl]-p-cresol (bbapOH), N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane (tbpOH), N-methyl-N,N',N'-tris(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane (m-tbpOH) and 1-[N,N-bis(2-benzimidazolylmethyl)amino]-3-[2-(3,5-dimethyl-1H-pyrazol-1-yl)ethoxy]-2-hydroxypropane (bpepOH) were prepared in order to model the active site of urease. The novel asymmetric structures of the dinuclear complexes were characterized by X-ray structure analysis. The complex [Ni(2)(bbapO)(ClO(4))(H(2)O)(MeOH)](ClO(4))(2).Et(2)O, 1, crystallizes in the monoclinic space group P2(1)/c, with a = 10.258(2) ?, b = 19.876(3) ?, c = 25.592(4) ?, and beta = 97.12(2) degrees. The nickel ions in 1 are bridged by the phenoxy donor of the ligand and a perchlorate anion. The complexes [Ni(2)(tbpO)(MeCOO)(H(2)O)](ClO(4))(2).H(2)O.Et(2)O, 2, [Ni(2)(m-tbpO)(PhCOO)(EtOH)(2)](ClO(4))(2).EtOH, 3, and [Ni(2)(bpepO)(MeCOO)(H(2)O)(2)](ClO(4))(2).H(2)O.Et(2)O.2EtOH, 4, also crystallize in the monoclinic crystal system with the following unit cell parameters: 2, C2/c, a = 35.360(13) ?, b = 10.958(3) ?, c = 24.821(10) ?, beta = 103.55(3) degrees; 3, Cc, a = 14.663(5) ?, b = 32.630(13) ?, c = 9.839(3) ?, beta = 92.49(2) degrees; 4, C2/c, a = 27.689(13) ?, b = 12.187(5) ?, c = 31.513(14) ?, beta = 115.01(3) degrees. The dinuclear centers of all these complexes are bridged by the alkoxy donor of the ligand and a carboxylate function. Compounds 2 and 3 have one of the nickel ions in a five-coordinated, trigonal bipyramidal coordination environment and thus show a high structural similarity to the dinuclear active site of urease from Klebsiella aerogenes. Furthermore, their magnetic and spectroscopic properties were determined and related to those of the urease enzymes. Activity toward hydrolysis of test substrates (4-nitrophenyl)urea, 4-nitroacetanilide, 4-nitrophenyl phosphate or bis(4-nitrophenyl) phosphate by the dinuclear complexes were examined by UV spectroscopic measurements.  相似文献   

20.
Aluminum can undergo hydrolysis in aqueous solutions leading to the formation of soluble molecular clusters, including polynuclear species that range from 1 to 2 nm in diameter. While the behavior of aluminum has been extensively investigated, much less is known about the hydrolysis of more complex mixed-metal systems. This study focuses on the structural characteristics of heterometallic thorium-aluminum molecular species that may have important implications for the speciation of tetravalent actinides in radioactive waste streams and environmental systems. Two mixed metal (Th(4+)/Al(3+)) polynuclear species have been synthesized under ambient conditions and structurally characterized by single-crystal X-ray diffraction. [Th(2)Al(6)(OH)(14)(H(2)O)(12)(hedta)(2)](NO(3))(6)(H(2)O)(12) (ThAl1) crystallizes in space group P2(1)/c with unit cell parameters of a = 11.198(1) ?, b = 14.210(2) ?, c = 23.115(3) ?, and β = 96.375° and [Th(2)Al(8)(OH)(12)(H(2)O)(10)(hdpta)(4)](H(2)O)(21) (ThAl2) was modeled in P1? with a = 13.136(4) ?, b = 14.481(4) ?, c = 15.819(4) ?, α = 78.480(9)°, β = 65.666(8)°, γ = 78.272(8)°. Infrared spectra were collected on both compounds, confirming complexation of the ligand to the metal center, and thermogravimetric analysis indicated that the thermal degradation of these compounds resulted in the formation of an amorphous product at high temperatures. These mixed metal species have topological relationships to previously characterized aluminum-based polynuclear species and may provide insights into the adsorption of tetravalent actinides on colloidal or mineral surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号